Numerical evolution of black holes with a hyperbolic formulation of general relativity

被引:33
|
作者
Scheel, MA
Baumgarte, TW
Cook, GB
Shapiro, SL
Teukolsky, SA
机构
[1] UNIV ILLINOIS,DEPT PHYS,URBANA,IL 61801
[2] UNIV ILLINOIS,DEPT ASTRON,URBANA,IL 61801
[3] UNIV ILLINOIS,NATL CTR SUPERCOMP APPLICAT,URBANA,IL 61801
[4] CORNELL UNIV,DEPT PHYS,ITHACA,NY 14853
[5] CORNELL UNIV,DEPT ASTRON,ITHACA,NY 14853
来源
PHYSICAL REVIEW D | 1997年 / 56卷 / 10期
关键词
D O I
10.1103/PhysRevD.56.6320
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe a numerical code that solves Einstein's equations for a Schwarzschild black hole in spherical symmmetry, using a hyperbolic formulation introduced by Choquet-Bruhat and York. This is the first time this formulation has been used to evolve a numerical spacetime containing a black here. We excise the hale from the computational grid in order to avoid the central singularity. We describe in detail a causal differencing method that should allow one to stably evolve a hyperbolic system of equations in three spatial dimensions with an arbitrary shift vector. to second-order accuracy in both space and time. We demonstrate the success of this method in the spherically symmetric case. [S0556-2821(97)06072-0].
引用
收藏
页码:6320 / 6335
页数:16
相关论文
共 50 条
  • [31] GENERAL-RELATIVITY - BLACK-HOLES AND INFORMATION
    HISCOCK, WA
    NATURE, 1993, 363 (6428) : 397 - 398
  • [32] Comment on "Boosted Kerr black holes in general relativity"
    Gallo, Emanuel
    Madler, Thomas
    PHYSICAL REVIEW D, 2020, 101 (02)
  • [33] Exotic Spinorial Structure and Black Holes in General Relativity
    Beghetto, D.
    Cavalcanti, R. T.
    da Silva, J. M. Hoff
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (05)
  • [34] Binary black holes, gravitational waves, and numerical relativity
    Centrella, Joan M.
    Baker, John G.
    Boggs, William D.
    Kelly, Bernard J.
    McWilliams, Sean T.
    van Meter, James R.
    SCIDAC 2007: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2007, 78
  • [35] Black holes and fundamental fields in numerical relativity: Initial data construction and evolution of bound states
    Okawa, Hirotada
    Witek, Helvi
    Cardoso, Vitor
    PHYSICAL REVIEW D, 2014, 89 (10):
  • [36] Numerical performance of the parabolized ADM formulation of general relativity
    Paschalidis, Vasileios
    Hansen, Jakob
    Khokhlov, Alexei
    PHYSICAL REVIEW D, 2008, 78 (06):
  • [37] X-ray Tests of General Relativity with Black Holes
    Bambi, Cosimo
    SYMMETRY-BASEL, 2023, 15 (06):
  • [38] Testing General Relativity with NuSTAR Data of Galactic Black Holes
    Tripathi, Ashutosh
    Zhang, Yuexin
    Abdikamalov, Askar B.
    Ayzenberg, Dimitry
    Bambi, Cosimo
    Jiang, Jiachen
    Liu, Honghui
    Zhou, Menglei
    ASTROPHYSICAL JOURNAL, 2021, 913 (02):
  • [39] Rotating black holes in general relativity coupled to nonlinear electrodynamics
    Ghosh, Sushant G.
    Walia, Rahul Kumar
    ANNALS OF PHYSICS, 2021, 434
  • [40] Black Holes in an Effective Field Theory Extension of General Relativity
    Cardoso, Vitor
    Kimura, Masashi
    Maselli, Andrea
    Senatore, Leonardo
    PHYSICAL REVIEW LETTERS, 2018, 121 (25)