On perturbative gravity and gauge theory

被引:6
|
作者
Bern, Z [1 ]
Dixon, L
Dunbar, DC
Grant, AK
Perelstein, M
Rozowsky, JS
机构
[1] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA
[2] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA
[3] Univ Coll Swansea, Dept Phys, Swansea SA2 8PP, W Glam, Wales
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Univ Florida, Dept Phys, Inst Fundamental Theory, Gainesville, FL 32611 USA
关键词
D O I
10.1016/S0920-5632(00)00768-4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We review some applications of tree-level (classical) relations between gravity and gauge theory that follow from string theory. Together with D-dimensional unitarity, these relations can be used to perturbatively quantize gravity theories, i.e. they contain the necessary information for obtaining loop contributions. We also review recent applications of these ideas showing that N = 1 D = II supergravity diverges, and review arguments that N = 8 D = 4 supergravity is less divergent than previously thought, though it does appear to diverge at five loops. Finally, we describe field variables for the Einstein-Hilbert Lagrangian that help clarify the perturbative relationship between gravity and gauge theory.
引用
收藏
页码:194 / 203
页数:10
相关论文
共 50 条
  • [21] Gravity as the square of gauge theory
    Bern, Zvi
    Dennen, Tristan
    Huang, Yu-tin
    Kiermaier, Michael
    PHYSICAL REVIEW D, 2010, 82 (06):
  • [22] Gauge theory of gravity and supergravity
    Kaul, RK
    PHYSICAL REVIEW D, 2006, 73 (06):
  • [23] GRAVITY AS A GAUGE THEORY OF TRANSLATIONS
    Martin-Martin, J.
    Tiemblo, A.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (02) : 323 - 335
  • [24] Classical Gauge Theory of Gravity
    G. A. Sardanashvily
    Theoretical and Mathematical Physics, 2002, 132 : 1163 - 1171
  • [25] Classical gauge theory of gravity
    Sardanashvily, GA
    THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 132 (02) : 1163 - 1171
  • [26] Gravity as the Square of Gauge Theory
    Kiermaier, Michael
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2011, (188): : 177 - 186
  • [27] A Generalized Gauge Theory of Gravity
    Nishida, Kohzo
    PROGRESS OF THEORETICAL PHYSICS, 2010, 123 (02): : 227 - 235
  • [28] Gravity: A gauge theory perspective
    Nester, James M.
    Chen, Chiang-Mei
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2016, 25 (13):
  • [29] A Lorentz gauge theory of gravity
    Borzou, Ahmad
    CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (02)
  • [30] Linearized gravity as a gauge theory
    Nieto, JA
    MODERN PHYSICS LETTERS A, 2005, 20 (02) : 135 - 144