Model generation of neural network ensembles using two-level cross-validation

被引:0
|
作者
Vasupongayya, S [1 ]
Renner, RS [1 ]
Juliano, BA [1 ]
机构
[1] Calif State Univ Los Angeles, Dept Comp Sci, Chico, CA 95929 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research investigates cross-validation techniques for performing neural network ensemble generation and performance evaluation. The chosen framework is the Neural Network Ensemble Simulator (NNES). Ensembles of classifiers are generated using level-one cross-validation. Extensive modeling is performed and evaluated using level-two cross-validation. NNES 4.0 automatically generates unique data sets for each student and each ensemble within a model. The results of this study confirm that level-one cross-validation improves ensemble model generation. Results also demonstrate the value of level-two cross-validation as a mechanism for measuring the true performance of a given model.
引用
收藏
页码:943 / 951
页数:9
相关论文
共 50 条
  • [21] Time series forecasting using a weighted cross-validation evolutionary artificial neural network ensemble
    Peralta Donate, Juan
    Cortez, Paulo
    Gutierrez Sanchez, German
    Sanchis de Miguel, Araceli
    NEUROCOMPUTING, 2013, 109 : 27 - 32
  • [22] An unbiased model comparison test using cross-validation
    Desmarais, Bruce A.
    Harden, Jeffrey J.
    QUALITY & QUANTITY, 2014, 48 (04) : 2155 - 2173
  • [23] Two-Level Regression Method Using Ensembles of Trees with Optimal Divergence
    Yu. I. Zhuravlev
    O. V. Senko
    A. A. Dokukin
    N. N. Kiselyova
    I. A. Saenko
    Doklady Mathematics, 2021, 104 : 212 - 215
  • [24] An unbiased model comparison test using cross-validation
    Bruce A. Desmarais
    Jeffrey J. Harden
    Quality & Quantity, 2014, 48 : 2155 - 2173
  • [25] Corrected generalized cross-validation for finite ensembles of penalized estimators
    Bellec, Pierre C.
    Du, Jin-Hong
    Koriyama, Takuya
    Patil, Pratik
    Tan, Kai
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2024,
  • [26] Two-Level Regression Method Using Ensembles of Trees with Optimal Divergence
    Zhuravlev, Yu. I.
    Senko, O. V.
    Dokukin, A. A.
    Kiselyova, N. N.
    Saenko, I. A.
    DOKLADY MATHEMATICS, 2021, 104 (01) : 212 - 215
  • [27] A two-level neural network approach for dynamic FE model updating including damping
    Lu, Y
    Tu, ZG
    JOURNAL OF SOUND AND VIBRATION, 2004, 275 (3-5) : 931 - 952
  • [28] Cross-validation is dead. Long live cross-validation! Model validation based on resampling
    Knut Baumann
    Journal of Cheminformatics, 2 (Suppl 1)
  • [29] Two-Level Model for Table-to-Text Generation
    Cao, Juan
    Gong, Junpeng
    Zhang, Pengzhou
    2019 INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING SYSTEMS (SPSS 2019), 2019, : 121 - 124
  • [30] A Two-level Social Mobility Model for Trace Generation
    Gaito, Sabrina
    Grossi, Giuliano
    Pedersini, Federico
    MOBIHOC'08: PROCEEDINGS OF THE NINTH ACM INTERNATIONAL SYMPOSIUM ON MOBILE AD HOC NETWORKING AND COMPUTING, 2008, : 457 - +