Review of Experimental GAPT and Infrared Atomic Charges in Molecules

被引:13
|
作者
Richter, Wagner E. [1 ]
Duarte, Leonardo J. [1 ]
Silva, Arnaldo F. [1 ]
Bruns, Roy E. [1 ]
机构
[1] Univ Estadual Campinas Unicamp, Inst Quim, CP 6154, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
atomic charges; infrared spectroscopy; ionization energies; atomic polar tensors; QTAIM; DIPOLE-MOMENT DERIVATIVES; PHASE INTENSITY MEASUREMENTS; PRINCIPAL COMPONENT ANALYSIS; CORE ELECTRON ENERGIES; POLAR TENSORS; VIBRATIONAL INTENSITIES; FUNDAMENTAL INTENSITIES; ABSORPTION INTENSITIES; ABINITIO COUNTERPART; CIS-DIFLUOROETHYLENE;
D O I
10.5935/0103-5053.20160105
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This review contains experimental values of polar tensors and generalized atomic polar tensor (GAPT) charges determined since the publication of the polar tensor formulism for infrared intensity interpretation in 1961. GAPT charges, also called mean dipole moment derivatives, for 167 atoms of 67 molecules are discussed and compared with infrared charges also determined completely from experimental intensities. The importance of the charge transfer and polarization dynamic contributions to the GAPT charge are emphasized as they differentiate this charge from most theoretically calculated charges. The inclusion of these dynamic contributions is shown to be necessary to provide adequate numerical descriptions of core electron ionization energy processes. These contributions are expected to be important in studies of chemical reactivity.
引用
收藏
页码:979 / 991
页数:13
相关论文
共 50 条
  • [21] REPRESENTATION OF MOLECULES BY ATOMIC CHARGES - A NEW POPULATION ANALYSIS
    TASI, G
    KIRICSI, I
    FORSTER, H
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1992, 13 (03) : 371 - 379
  • [22] ABINITIO COUNTERPART OF INFRARED ATOMIC CHARGES - CHARGE FLUXES
    GUSSONI, M
    RAMOS, MN
    CASTIGLIONI, C
    ZERBI, G
    CHEMICAL PHYSICS LETTERS, 1989, 160 (02) : 200 - 205
  • [23] Core electron energies, infrared intensities, and atomic charges
    Guadagnini, PH
    Oliveira, AE
    Bruns, RE
    Neto, BD
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (18) : 4224 - 4231
  • [24] Atomic charges in molecules defined by molecular real space partition into atomic subspaces
    Zhao, Jian
    Zhu, Zun-Wei
    Zhao, Dong-Xia
    Yang, Zhong-Zhi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (13) : 9020 - 9030
  • [25] ABINITIO COUNTERPART OF INFRARED ATOMIC CHARGES - COMPARISON WITH CHARGES OBTAINED FROM ELECTROSTATIC POTENTIALS
    RAMOS, MN
    GUSSONI, M
    CASTIGLIONI, C
    ZERBI, G
    CHEMICAL PHYSICS LETTERS, 1988, 151 (4-5) : 397 - 402
  • [26] CALCULATION OF ELECTROSTATIC POTENTIAL MAPS AND ATOMIC CHARGES FOR LARGE MOLECULES
    TASI, G
    PALINKO, I
    NYERGES, L
    FEJES, P
    FORSTER, H
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1993, 33 (03): : 296 - 299
  • [28] Experimental validation of calculated atomic charges in ionic liquids
    Fogarty, Richard M.
    Matthews, Richard P.
    Ashworth, Claire R.
    Brandt-Talbot, Agnieszka
    Palgrave, Robert G.
    Bourne, Richard A.
    Hoogerstraete, Tom Vander
    Hunt, Patricia A.
    Lovelock, Kevin R. J.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (19):
  • [29] ATOMIC CHARGES FOR LARGE MOLECULES DERIVED FROM ABINITIO ELECTROSTATIC POTENTIALS
    LEE, JG
    FRIESNER, RA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 204 : 240 - PHYS
  • [30] Calculating atomic charges in molecules and crystals by a new electronegativity equalization method
    Batsanov, Stepan S.
    JOURNAL OF MOLECULAR STRUCTURE, 2011, 1006 (1-3) : 223 - 226