Darboux Transformation and Explicit Solutions for Discretized Modified Korteweg-de Vries Lattice Equation

被引:0
|
作者
Wen Xiao-Yong [1 ,2 ,3 ]
Gao Yi-Tian [1 ,2 ,4 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
[3] Beijing Informat Sci & Technol Univ, Coll Sci, Dept Math, Beijing 100192, Peoples R China
[4] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Darboux transformation; discretized modified Korteweg-de Vries lattice equation; explicit solutions; symbolic computation; DIFFERENTIAL-DIFFERENCE EQUATIONS; HIROTA BILINEAR FORMALISM; ELLIPTIC FUNCTION-METHOD; SOLITARY WAVE SOLUTIONS; CLASSICAL R-MATRIX; INTEGRABLE SYSTEMS; VOLTERRA LATTICE; MKDV LATTICE; EVOLUTION-EQUATIONS; TODA LATTICE;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The modified Korteweg-de Vries (mKdV) typed equations can be used to describe certain nonlinear phenomena in fluids, plasmas, and optics. In this paper, the discretized mKdV lattice equation is investigated. With the aid of symbolic computation, the discrete matrix spectral problem for that system is constructed. Darboux transformation for that system is established based on the resulting spectral problem. Explicit solutions are derived via the Darboux transformation. Structures of those solutions are shown graphically, which might be helpful to understand some physical processes in fluids, plasmas, and optics.
引用
收藏
页码:825 / 830
页数:6
相关论文
共 50 条
  • [31] STOCHASTIC MODIFIED KORTEWEG-DE VRIES EQUATION
    BLASZAK, M
    ACTA PHYSICA POLONICA A, 1986, 70 (05) : 503 - 515
  • [32] Finite genus solutions to the lattice Schwarzian Korteweg-de Vries equation
    Xu, Xiaoxue
    Cao, Cewen
    Zhang, Guangyao
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2020, 27 (04) : 633 - 646
  • [33] ANALYSIS OF A MODIFIED KORTEWEG-DE VRIES EQUATION
    LEO, M
    LEO, RA
    SOLIANI, G
    PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06): : 1475 - 1466
  • [34] MODIFIED KORTEWEG-DE VRIES EQUATION IN ELECTROHYDRODYNAMICS
    PERELMAN, TL
    FRIDMAN, AK
    ELYASHEV.MM
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1974, 66 (04): : 1316 - 1323
  • [35] Matrix Korteweg-de Vries and modified Korteweg-de Vries hierarchies: Noncommutative soliton solutions
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [36] Computability of solutions of the Korteweg-de Vries equation
    Gay, W
    Zhang, BY
    Zhong, N
    MATHEMATICAL LOGIC QUARTERLY, 2001, 47 (01) : 93 - 110
  • [37] Quasiperiodic solutions of the Korteweg-de Vries equation
    Yu. N. Zaiko
    Technical Physics Letters, 2002, 28 : 235 - 236
  • [38] On the singular solutions of the Korteweg-de Vries equation
    S. I. Pokhozhaev
    Mathematical Notes, 2010, 88 : 741 - 747
  • [39] Complexiton solutions to the Korteweg-de Vries equation
    Ma, WX
    PHYSICS LETTERS A, 2002, 301 (1-2) : 35 - 44
  • [40] Primitive solutions of the Korteweg-de Vries equation
    Dyachenko, S. A.
    Nabelek, P.
    Zakharov, D. V.
    Zakharov, V. E.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 202 (03) : 334 - 343