Deformation quantization on the cotangent bundle of a Lie group

被引:0
|
作者
Domanski, Ziemowit [1 ]
机构
[1] Poznan Univ Tech, Inst Math, Piotrowo 3A, PL-60965 Poznan, Poland
关键词
FEDOSOV STAR PRODUCTS; REPRESENTATIONS; ALGEBRAS; WEYL;
D O I
10.1063/1.5113812
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a complete theory of non-formal deformation quantization on the cotangent bundle of a weakly exponential Lie group. An appropriate integral formula for the star-product is introduced together with a suitable space of functions on which the star-product is well defined. This space of functions becomes a Frechet algebra as well as a pre-C-*-algebra. Basic properties of the star-product are proved, and the extension of the star-product to a Hilbert algebra and an algebra of distributions is given. A C-*-algebra of observables and a space of states are constructed. Moreover, an operator representation in position space is presented. Finally, examples of weakly exponential Lie groups are given.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Constraints on the deformation scale of a geometry in the cotangent bundle
    Relancio, J. J.
    Liberati, S.
    PHYSICAL REVIEW D, 2020, 102 (10)
  • [22] Spectral Extension of the Quantum Group Cotangent Bundle
    Isaev, Alexei P.
    Pyatov, Pavel
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (03) : 1137 - 1179
  • [23] Spectral Extension of the Quantum Group Cotangent Bundle
    Alexei P. Isaev
    Pavel Pyatov
    Communications in Mathematical Physics, 2009, 288 : 1137 - 1179
  • [24] CONSTRUCTION OF THE COTANGENT BUNDLE OF A LOCALLY COMPACT GROUP
    AKBAROV, SS
    IZVESTIYA MATHEMATICS, 1995, 59 (03) : 445 - 470
  • [25] Extensions of Lie-Rinehart algebras and cotangent bundle reduction
    Huebschmann, J.
    Perlmutter, M.
    Ratiu, T. S.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 : 1135 - 1172
  • [26] BRST algebra quantum double and quantization of the proper time cotangent bundle
    Lyakhovsky, VD
    Tkach, VI
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (12): : 2869 - 2880
  • [27] Quantization commutes with singular reduction: Cotangent bundles of compact Lie groups
    Boeijink, Jord
    Landsman, Klaas
    van Suijlekom, Walter
    REVIEWS IN MATHEMATICAL PHYSICS, 2019, 31 (06)
  • [28] BRST algebra quantum double and quantization of the proper time cotangent bundle
    Lyakhovsky, V. D.
    Tkach, V. I.
    Journal of Physics A: Mathematical and General, 31 (12):
  • [29] NOTES ON THE GEOMETRY OF COTANGENT BUNDLE AND UNIT COTANGENT SPHERE BUNDLE
    Kacimi, Bouazza
    Kadi, Fatima Zohra
    Ozkan, Mustafa
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (03): : 845 - 859
  • [30] Lie group representations and quantization
    Aldaya, V
    Guerrero, J
    REPORTS ON MATHEMATICAL PHYSICS, 2001, 47 (02) : 213 - 240