Multiscale model reduction with generalized multiscale finite element methods

被引:0
|
作者
Efendiev, Yalchin [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] KAUST, Numer Porous Media SRI Ctr, Thuwal 239556900, Saudi Arabia
关键词
Multiscale; finite element; porous media; homogenization; model reduction; ELLIPTIC PROBLEMS; FLOW; HOMOGENIZATION;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Many application problems have multiscale nature. Due to disparity of scales, the simulations of these problems are prohibitively expensive. Some types of upscaling or model reduction techniques are needed to solve many multiscale problems. In this paper, we discuss a few known techniques that are used for problems with scale separation and focus on Generalized Multiscale Finite Element Method (GMsFEM) that has been recently proposed for solving problems with non-separable scales and high contrast. The main objective of the method is to provide local reduced-order approximations for linear and nonlinear PDEs via multiscale spaces on a coarse computational grid. In the paper, we briefly discuss some main concepts of constructing multiscale spaces and applications of GMsFEMs.
引用
收藏
页码:749 / 766
页数:18
相关论文
共 50 条
  • [21] ADAPTIVE LEAST-SQUARES MIXED GENERALIZED MULTISCALE FINITE ELEMENT METHODS
    Chen, Fuchen
    Chung, Eric
    Jiang, Lijian
    MULTISCALE MODELING & SIMULATION, 2018, 16 (02): : 1034 - 1058
  • [22] Generalized macroscale model for Cosserat elasticity using Generalized Multiscale Finite Element Method
    Ammosov, Dmitry
    Efendiev, Yalchin
    Grekova, Elena
    Vasilyeva, Maria
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 461
  • [23] A Finite Element Model Order Reduction Technique for Multiscale Electromagnetic Problems
    Wu, Bi-Yi
    Hao, Yang
    Sheng, Xin-Qing
    IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2018, 3 : 140 - 148
  • [24] A generalized multiscale finite element method for the Brinkman equation
    Galvis, Juan
    Li, Guanglian
    Shi, Ke
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 280 : 294 - 309
  • [25] Generalized multiscale finite element method for elasticity equations
    Chung E.T.
    Efendiev Y.
    Fu S.
    GEM - International Journal on Geomathematics, 2014, 5 (2) : 225 - 254
  • [26] A mixed multiscale spectral generalized finite element method
    Alber, Christian
    Ma, Chupeng
    Scheichl, Robert
    NUMERISCHE MATHEMATIK, 2025, 157 (01) : 1 - 40
  • [27] A Generalized Multiscale Finite Element Method for Thermoelasticity Problems
    Vasilyeva, Maria
    Stalnov, Denis
    NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 713 - 720
  • [28] A weak Galerkin generalized multiscale finite element method
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 305 : 68 - 81
  • [29] Multiscale Simulations for Coupled Flow and Transport Using the Generalized Multiscale Finite Element Method
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    Ren, Jun
    COMPUTATION, 2015, 3 (04): : 670 - 686
  • [30] Generalized Multiscale Finite Element Method for Multicontinuum Coupled Flow and Transport Model
    D. A. Ammosov
    J. Huang
    W. T. Leung
    B. Shan
    Lobachevskii Journal of Mathematics, 2024, 45 (11) : 5343 - 5356