Multiscale model reduction with generalized multiscale finite element methods

被引:0
|
作者
Efendiev, Yalchin [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] KAUST, Numer Porous Media SRI Ctr, Thuwal 239556900, Saudi Arabia
关键词
Multiscale; finite element; porous media; homogenization; model reduction; ELLIPTIC PROBLEMS; FLOW; HOMOGENIZATION;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Many application problems have multiscale nature. Due to disparity of scales, the simulations of these problems are prohibitively expensive. Some types of upscaling or model reduction techniques are needed to solve many multiscale problems. In this paper, we discuss a few known techniques that are used for problems with scale separation and focus on Generalized Multiscale Finite Element Method (GMsFEM) that has been recently proposed for solving problems with non-separable scales and high contrast. The main objective of the method is to provide local reduced-order approximations for linear and nonlinear PDEs via multiscale spaces on a coarse computational grid. In the paper, we briefly discuss some main concepts of constructing multiscale spaces and applications of GMsFEMs.
引用
收藏
页码:749 / 766
页数:18
相关论文
共 50 条
  • [1] Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods
    Chung, Eric
    Efendiev, Yalchin
    Hou, Thomas Y.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 320 : 69 - 95
  • [2] REITERATED MULTISCALE MODEL REDUCTION USING THE GENERALIZED MULTISCALE FINITE ELEMENT METHOD
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    Vasilyeva, Maria
    International Journal for Multiscale Computational Engineering, 2016, 14 (06) : 535 - 554
  • [3] Nonconforming generalized multiscale finite element methods
    Lee, Chak Shing
    Sheen, Dongwoo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 311 : 215 - 229
  • [4] Generalized multiscale finite element methods (GMsFEM)
    Efendiev, Yalchin
    Galvis, Juan
    Hou, Thomas Y.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 251 : 116 - 135
  • [5] Multiscale model reduction for a thermoelastic model with phase change using a generalized multiscale finite-element method
    D. A. Ammosov
    V. I. Vasil’ev
    M. V. Vasil’eva
    S. P. Stepanov
    Theoretical and Mathematical Physics, 2022, 211 : 595 - 610
  • [6] Multiscale model reduction for a thermoelastic model with phase change using a generalized multiscale finite-element method
    Ammosov, D. A.
    Vasil'ev, V. I.
    Vasil'eva, M. V.
    Stepanov, S. P.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 211 (02) : 595 - 610
  • [7] GENERALIZED MULTISCALE FINITE ELEMENT METHODS: OVERSAMPLING STRATEGIES
    Efendiev, Yalchin
    Galvis, Juan
    Li, Guanglian
    Presho, Michael
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2014, 12 (06) : 465 - 484
  • [8] MIXED GENERALIZED MULTISCALE FINITE ELEMENT METHODS AND APPLICATIONS
    Chung, Eric T.
    Efendiev, Yalchin
    Lee, Chak Shing
    MULTISCALE MODELING & SIMULATION, 2015, 13 (01): : 338 - 366
  • [9] SPARSE GENERALIZED MULTISCALE FINITE ELEMENT METHODS AND THEIR APPLICATIONS
    Chung, Eric
    Efendiev, Yalchin
    Leung, Wing Tat
    Li, Guanglian
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2016, 14 (01) : 1 - 23
  • [10] RANDOMIZED OVERSAMPLING FOR GENERALIZED MULTISCALE FINITE ELEMENT METHODS
    Calo, Victor M.
    Efendiev, Yalchin
    Galvis, Juan
    Li, Guanglian
    MULTISCALE MODELING & SIMULATION, 2016, 14 (01): : 482 - 501