REGULARITY ANALYSIS FOR SYSTEMS OF REACTION-DIFFUSION EQUATIONS

被引:0
|
作者
Goudon, Thierry [1 ,2 ]
Vasseur, Alexis [3 ]
机构
[1] Project Team SIMPAF INRIA Lille Nord Europe, F-59650 Villeneuve Dascq, France
[2] Labo Paul Painleve CNRS USTLille, F-59650 Villeneuve Dascq, France
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
NAVIER-STOKES EQUATIONS; GLOBAL EXISTENCE; ENTROPY METHODS; WEAK SOLUTIONS; BLOW-UP; PROOF; DECAY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of the regularity of solutions to some systems of reaction diffusion equations. In particular, we show the global boundedness and regularity of the solutions in one and two dimensions. In addition, we discuss the Hausdorff dimension of the set of singularities in higher dimensions. Our approach is inspired by De Giorgi's method for elliptic regularity with rough coefficients. The proof uses the specific structure of the system to be considered and is not a mere adaptation of scalar techniques; in particular the natural entropy of the system plays a crucial role in the analysis.
引用
收藏
页码:117 / 142
页数:26
相关论文
共 50 条
  • [21] Amplitude equations for wave bifurcations in reaction-diffusion systems
    Villar-Sepulveda, Edgardo
    Champneys, Alan
    NONLINEARITY, 2024, 37 (08)
  • [22] Mechanisms for stabilisation and destabilisation of systems of reaction-diffusion equations
    Gourley, SA
    Britton, NF
    Chaplain, MAJ
    Byrne, HM
    JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 34 (08) : 857 - 877
  • [23] Amplitude equations for description of chemical reaction-diffusion systems
    Ipsen, M
    Kramer, L
    Sorensen, PG
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 337 (1-2): : 193 - 235
  • [24] PERIODIC-SOLUTIONS TO SYSTEMS OF REACTION-DIFFUSION EQUATIONS
    ROSEN, G
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1976, 301 (03): : 307 - 312
  • [25] Lattice differential equations embedded into reaction-diffusion systems
    Scheel, Arnd
    Van Vleck, Erik S.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 : 193 - 207
  • [26] STABILITY PROPERTIES OF SOLUTIONS TO SYSTEMS OF REACTION-DIFFUSION EQUATIONS
    CASTEN, RG
    HOLLAND, CJ
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 33 (02) : 353 - 364
  • [27] Generalized travelling coordinate for systems of reaction-diffusion equations
    Takase, H
    Sleeman, BD
    IMA JOURNAL OF APPLIED MATHEMATICS, 2000, 64 (01) : 1 - 22
  • [28] Analytic regularity for a singularly perturbed system of reaction-diffusion equations with multiple scales
    J. M. Melenk
    C. Xenophontos
    L. Oberbroeckling
    Advances in Computational Mathematics, 2013, 39 : 367 - 394
  • [29] Analytic regularity for a singularly perturbed system of reaction-diffusion equations with multiple scales
    Melenk, J. M.
    Xenophontos, C.
    Oberbroeckling, L.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 39 (02) : 367 - 394
  • [30] SYSTEMS OF REACTION-DIFFUSION EQUATIONS WITH SPATIALLY DISTRIBUTED HYSTERESIS
    Gurevich, Pavel
    Tikhomirov, Sergey
    MATHEMATICA BOHEMICA, 2014, 139 (02): : 239 - 257