REGULARITY ANALYSIS FOR SYSTEMS OF REACTION-DIFFUSION EQUATIONS

被引:0
|
作者
Goudon, Thierry [1 ,2 ]
Vasseur, Alexis [3 ]
机构
[1] Project Team SIMPAF INRIA Lille Nord Europe, F-59650 Villeneuve Dascq, France
[2] Labo Paul Painleve CNRS USTLille, F-59650 Villeneuve Dascq, France
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
NAVIER-STOKES EQUATIONS; GLOBAL EXISTENCE; ENTROPY METHODS; WEAK SOLUTIONS; BLOW-UP; PROOF; DECAY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of the regularity of solutions to some systems of reaction diffusion equations. In particular, we show the global boundedness and regularity of the solutions in one and two dimensions. In addition, we discuss the Hausdorff dimension of the set of singularities in higher dimensions. Our approach is inspired by De Giorgi's method for elliptic regularity with rough coefficients. The proof uses the specific structure of the system to be considered and is not a mere adaptation of scalar techniques; in particular the natural entropy of the system plays a crucial role in the analysis.
引用
收藏
页码:117 / 142
页数:26
相关论文
共 50 条
  • [1] LAGRANGIAN COORDINATES AND REGULARITY OF INTERFACES IN REACTION-DIFFUSION EQUATIONS
    SHMAREV, SI
    VAZQUEZ, JL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (08): : 993 - 998
  • [2] The regularity of solutions of reaction-diffusion equations via Lagrangian coordinates
    Shmarev, Sergei I.
    Vazquez, Juan L.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1996, 3 (04): : 465 - 497
  • [3] Reaction-diffusion systems with initial data of low regularity
    Laamri, El-Haj
    Perthame, Benoit
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9310 - 9335
  • [4] Close-to-equilibrium regularity for reaction-diffusion systems
    Bao Quoc Tang
    JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (02) : 845 - 869
  • [5] Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis
    Maybank, Philip J.
    Whiteley, Jonathan P.
    MATHEMATICAL BIOSCIENCES, 2014, 248 : 146 - 157
  • [6] Analysis of reaction-diffusion systems by the method of linear determining equations
    Schmidt A.V.
    Computational Mathematics and Mathematical Physics, 2007, 47 (2) : 249 - 261
  • [7] Dynamics and regularity for non-autonomous reaction-diffusion equations with anomalous diffusion
    Yan, Xingjie
    Wang, Shubin
    Yang, Xin-Guang
    Zhang, Junzhao
    ASYMPTOTIC ANALYSIS, 2023, 132 (3-4) : 495 - 517
  • [8] Amplitude equations for reaction-diffusion systems with cross diffusion
    Zemskov, Evgeny P.
    Vanag, Vladimir K.
    Epstein, Irving R.
    PHYSICAL REVIEW E, 2011, 84 (03):
  • [9] Global regularity and convergence to equilibrium of reaction-diffusion systems with nonlinear diffusion
    Fellner, Klemens
    Latos, Evangelos
    Bao Quoc Tang
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (03) : 957 - 1003
  • [10] PARTICLE-SYSTEMS AND REACTION-DIFFUSION EQUATIONS
    DURRETT, R
    NEUHAUSER, C
    ANNALS OF PROBABILITY, 1994, 22 (01): : 289 - 333