Tunable terahertz topological edge and corner states in designer surface plasmon crystals

被引:15
|
作者
Wang, Jiayi [1 ,2 ]
Liu, Yang [1 ,2 ]
Yang, Donghao [1 ,2 ]
Hu, Zhichan [1 ,2 ]
Zhang, Xinzheng [1 ,2 ,3 ]
Xia, Shiqi [1 ,2 ]
Song, Daohong [1 ,2 ,3 ]
Ren, Mengxin [1 ,2 ]
Gao, Shaohua [4 ]
Wang, Ride [5 ]
Chen, Zhigang [1 ,2 ,3 ]
Xu, Jingjun [1 ,2 ,6 ]
机构
[1] Nankai Univ, Key Lab Weak Light Nonlinear Photon, Minist Educ, TEDA Inst Appl Phys, Tianjin 300457, Peoples R China
[2] Nankai Univ, Sch Phys, Tianjin 300457, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[4] Taiyuan Univ Technol, Coll Phys & Optoelect, Inst Optoelect Engn, Taiyuan 030024, Peoples R China
[5] Natl Innovat Inst Def Technol, Innovat Lab Terahertz Biophys, Beijing 100071, Peoples R China
[6] Synerget Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
LASER; PHASE;
D O I
10.1364/OE.431151
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, we study topological edge and corner states in two-dimensional (2D) Su-Schrieffer-Heeger lattices from designer surface plasmon crystals (DSPCs), where the vertical confinement of the designer surface plasmons enables signal detection without the need of additional covers for the sample. In particular, the formation of higher-order topological insulator can be determined by the two-dimensional Zak phase, and the zero-dimensional subwavelength corner states are found in the designed DSPCs at the terahertz (THz) frequency band together with the edge states. Moreover, the corner state frequency can be tuned by modifying the defect strength, i.e., the location or diameter of the corner pillars. This work may provide a new approach for confining THz waves in DSPCs, which is promising for the development of THz topological photonic integrated devices with high compactness, robustness and tunability. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:19531 / 19539
页数:9
相关论文
共 50 条
  • [41] Tunable edge states in reconfigurable photonic crystals
    Wang, Hai-Xiao
    Chen, Huanyang
    Jiang, Jian-Hua
    Guo, Guang-Yu
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (19)
  • [42] Surface and edge states in topological semimetals
    Chu, Rui-Lin
    Shan, Wen-Yu
    Lu, Jie
    Shen, Shun-Qing
    PHYSICAL REVIEW B, 2011, 83 (07)
  • [43] Valley-Selective Topological Corner States in Sonic Crystals
    Zhang, Xiujuan
    Liu, Le
    Lu, Ming-Hui
    Chen, Yan-Feng
    PHYSICAL REVIEW LETTERS, 2021, 126 (15)
  • [44] Tunable coupled terahertz surface plasmon polaritons in graphene metamaterials
    Tao, Z. H.
    Dong, H. M.
    Duan, Y. F.
    Liu, J. L.
    Cao, B. H.
    JOURNAL OF OPTICS, 2019, 21 (04)
  • [45] Terahertz polarizer based on tunable surface plasmon in graphene nanoribbon
    Sarker, Dip
    Nakti, Partha Pratim
    Tahmid, Md Ishfak
    Mamun, Md Asaduz Zaman
    Zubair, Ahmed
    OPTICS EXPRESS, 2021, 29 (26) : 42713 - 42725
  • [46] Actively Reconfigurable Valley Topological Edge and Corner States in Photonic Crystals Based on Phase Change Material GeSbTe
    Li Wei
    Peng Yuxiang
    Su Peihao
    Li Jianbo
    Wang Kaijun
    Liu Exian
    Liu Jianqiang
    He Mengdong
    激光与光电子学进展, 2024, 61 (05) : 567 - 581
  • [47] On/Off Switching of Valley Topological Edge States in the Terahertz Region
    Li, Hongyi
    Ouyang, Chunmei
    Ma, Jiajun
    Liu, Shilei
    Liu, Yi
    Xu, Quan
    Li, Yanfeng
    Tian, Zhen
    Gu, Jianqiang
    Han, Jiaguang
    Zhang, Weili
    IEEE PHOTONICS JOURNAL, 2022, 14 (03):
  • [48] Edge and waveguide terahertz surface plasmon modes in graphene microribbons
    Nikitin, A. Yu
    Guinea, F.
    Garcia-Vidal, F. J.
    Martin-Moreno, L.
    PHYSICAL REVIEW B, 2011, 84 (16):
  • [49] Rotational symmetry protected edge and corner states in Abelian topological phases
    Manjunath, Naren
    Prem, Abhinav
    Lu, Yuan -Ming
    PHYSICAL REVIEW B, 2023, 107 (19)
  • [50] Theory and Application of Edge States in Topological Photonic Crystals
    Liu Chao
    Guo Xiaowei
    Li Shaorong
    Gao Yuan
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (01)