GENERATIVE ADVERSARIAL SOURCE SEPARATION

被引:0
|
作者
Subakan, Y. Cem [1 ]
Smaragdis, Paris [1 ,2 ]
机构
[1] UIUC, Urbana, IL 61801 USA
[2] Adobe Syst, San Jose, CA USA
基金
美国国家科学基金会;
关键词
Generative Adversarial Networks; Source Separation; Generative Models;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Generative source separation methods such as non-negative matrix factorization (NMF) or auto-encoders, rely on the assumption of an output probability density. Generative Adversarial Networks (GANs) can learn data distributions without needing a parametric assumption on the output density. We show on a speech source separation experiment that, a multi-layer perceptron trained with a Wasserstein-GAN formulation outperforms NMF, auto-encoders trained with maximum likelihood, and variational auto-encoders in terms of source to distortion ratio.
引用
收藏
页码:26 / 30
页数:5
相关论文
共 50 条
  • [41] Coevolution of Generative Adversarial Networks
    Costa, Victor
    Lourenco, Nuno
    Machado, Penousal
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2019, 2019, 11454 : 473 - 487
  • [42] A survey of generative adversarial networks
    Zhu, Kongtao
    Liu, Xiwei
    Yang, Hongxue
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 2768 - 2773
  • [43] Optimized Generative Adversarial Networks for Adversarial Sample Generation
    Alghazzawi, Daniyal M.
    Hasan, Syed Hamid
    Bhatia, Surbhi
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (02): : 3877 - 3897
  • [44] A Generative Adversarial Density Estimator
    Abbasnejad, M. Ehsan
    Shi, Javen
    van den Hengel, Anton
    Liu, Lingqiao
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 10774 - 10783
  • [45] Triple Generative Adversarial Networks
    Li, Chongxuan
    Xu, Kun
    Zhu, Jun
    Liu, Jiashuo
    Zhang, Bo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9629 - 9640
  • [46] Stacked Generative Adversarial Networks
    Huang, Xun
    Li, Yixuan
    Poursaeed, Omid
    Hopcroft, John
    Belongie, Serge
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1866 - 1875
  • [47] Graphical Generative Adversarial Networks
    Li, Chongxuan
    Welling, Max
    Zhu, Jun
    Zhang, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [48] Generative Adversarial Ranking Nets
    Yao, Yinghua
    Pan, Yuangang
    Li, Jing
    Tsang, Ivor W.
    Yao, Xin
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 35
  • [49] Generative Trees: Adversarial and Copycat
    Nock, Richard
    Guillame-Bert, Mathieu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [50] Lipschitz Generative Adversarial Nets
    Zhou, Zhiming
    Liang, Jiadong
    Song, Yuxuan
    Yu, Lantao
    Wang, Hongwei
    Zhang, Weinan
    Yu, Yong
    Zhang, Zhihua
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97