Fast Fourier-Galerkin methods for first-kind logarithmic-kernel integral equations on open arcs

被引:25
|
作者
Wang Bo [4 ]
Wang Rui [3 ]
Xu YueSheng [1 ,2 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] Sun Yat Sen Univ, Dept Sci Comp & Comp Applicat, Guangzhou 510275, Guangdong, Peoples R China
[3] Chinese Acad Sci, Grad Univ, Sch Informat Sci & Engn, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Dirichlet problem; open arc; singular boundary integral equations; Fourier-Galerkin methods; logarithmic potentials; SMOOTH OPEN ARCS; NUMERICAL QUADRATURE; COLLOCATION;
D O I
10.1007/s11425-010-0014-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a fully discrete fast Fourier-Galerkin method for solving an integral equation of the first kind with a logarithmic kernel on a smooth open arc, which is a reformulation of the Dirichlet problem of the Laplace equation in the plane. The optimal convergence order and quasi-linear complexity order of the proposed method are established. A precondition is introduced. Combining this method with an efficient numerical integration algorithm for computing the single-layer potential defined on an open arc, we obtain the solution of the Dirichlet problem on a smooth open arc in the plane. Numerical examples are presented to confirm the theoretical estimates and to demonstrate the efficiency and accuracy of the proposed method.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 35 条
  • [31] Fast collocation methods for solving ill-posed integral equations of the first kind
    Chen, Zhongying
    Xu, Yuesheng
    Yang, Hongqi
    INVERSE PROBLEMS, 2008, 24 (06)
  • [32] A fast multiscale Galerkin method for the first kind ill-posed integral equations via iterated regularization
    Yang, Suhua
    Luo, Xingjun
    Li, Fanchun
    Long, Guangqing
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (21) : 10527 - 10537
  • [33] A fast multiscale Galerkin method for the first kind ill-posed integral equations via Tikhonov regularization
    Chen, Zhongying
    Cheng, Sirui
    Nelakanti, Gnaneshwar
    Yang, Hongqi
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (03) : 565 - 582
  • [34] A comparative study of iterative methods for solving first kind Fredholm integral equations with the semi-smooth kernel
    Muthuvalu, M. S.
    Aruchunan, E.
    Ali, M. K. M.
    Sulaiman, J.
    2015 INTERNATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES AND COMPUTING RESEARCH (ISMSC), 2015, : 477 - 480
  • [35] Numerical solution of Fredholm integral equations of the first kind with singular logarithmic kernel and singular unknown function via monic Chebyshev polynomials
    Shoukralla, E. S.
    Kamel, M.
    Markos, M. A.
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2021, 14 (01) : 77 - 88