Deep reinforcement learning stock market trading, utilizing a CNN with candlestick images

被引:6
|
作者
Brim, Andrew [1 ]
Flann, Nicholas S. [1 ]
机构
[1] Utah State Univ, Dept Comp Sci, Logan, UT 84322 USA
来源
PLOS ONE | 2022年 / 17卷 / 02期
关键词
COEFFICIENTS;
D O I
10.1371/journal.pone.0263181
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Billions of dollars are traded automatically in the stock market every day, including algorithms that use neural networks, but there are still questions regarding how neural networks trade. The black box nature of a neural network gives pause to entrusting it with valuable trading funds. A more recent technique for the study of neural networks, feature map visualizations, yields insight into how a neural network generates an output. Utilizing a Convolutional Neural Network (CNN) with candlestick images as input and feature map visualizations gives a unique opportunity to determine what in the input images is causing the neural network to output a certain action. In this study, a CNN is utilized within a Double Deep Q-Network (DDQN) to outperform the S&P 500 Index returns, and also analyze how the system trades. The DDQN is trained and tested on the 30 largest stocks in the S&P 500. Following training the CNN is used to generate feature map visualizations to determine where the neural network is placing its attention on the candlestick images. Results show that the DDQN is able to yield higher returns than the S&P 500 Index between January 2, 2020 and June 30, 2020. Results also show that the CNN is able to switch its attention from all the candles in a candlestick image to the more recent candles in the image, based on an event such as the coronavirus stock market crash of 2020.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] A stock market trading framework based on deep learning architectures
    Shah, Atharva
    Gor, Maharshi
    Sagar, Meet
    Shah, Manan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (10) : 14153 - 14171
  • [22] A stock market trading framework based on deep learning architectures
    Atharva Shah
    Maharshi Gor
    Meet Sagar
    Manan Shah
    Multimedia Tools and Applications, 2022, 81 : 14153 - 14171
  • [23] Application of A Deep Reinforcement Learning Method in Financial Market Trading
    Ma, Lixin
    Liu, Yang
    2019 11TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2019), 2019, : 421 - 425
  • [24] High-Dimensional Stock Portfolio Trading with Deep Reinforcement Learning
    Pigorsch, Uta
    Schaefer, Sebastian
    2022 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING AND ECONOMICS (CIFER), 2022,
  • [25] Empirical Analysis of Automated Stock Trading Using Deep Reinforcement Learning
    Kong, Minseok
    So, Jungmin
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [26] Deep Reinforcement Learning for Automated Stock Trading: Inclusion of Short Selling
    Asodekar, Eeshaan
    Nookala, Arpan
    Ayre, Sayali
    Nimkar, Anant V.
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2022), 2022, 13515 : 187 - 197
  • [27] Reinforcement Learning for Stock Option Trading
    Garza, James
    2023 31ST IRISH CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COGNITIVE SCIENCE, AICS, 2023,
  • [28] Trading Strategy in a Local Energy Market, a Deep Reinforcement Learning Approach
    Jogunola, Olamide
    Tsado, Yakubu
    Adebisi, Bamidele
    Nawaz, Raheel
    2021 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE (EPEC), 2021, : 347 - 352
  • [29] Rules Based Policy for Stock Trading: A New Deep Reinforcement Learning Method
    Badr, Hirchoua
    Ouhbi, Brahim
    Frikh, Bouchra
    PROCEEDINGS OF 2020 5TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS (CLOUDTECH'20), 2020, : 61 - 66
  • [30] Turbulence-driven Autonomous Stock Trading using Deep Reinforcement Learning
    Jaggi, Ramneet
    Abbas, Muhammad Naveed
    Dwivedi, Rahul
    Manzoor, Jawad
    Asghar, Mamoona Naveed
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,