Classification of RGB-D and Motion Capture Sequences Using Extreme Learning Machine

被引:0
|
作者
Chen, Xi [1 ]
Koskela, Markus [1 ]
机构
[1] Aalto Univ, Sch Sci, Dept Informat & Comp Sci, POB 15400, Aalto 00076, Finland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a robust motion recognition framework for both motion capture and RGB-D sensor data. We extract four different types of features and apply a temporal difference operation to form the final feature vector for each frame in the motion sequences. The frames are classified with the extreme learning machine, and the final class of an action is obtained by majority voting. We test our framework with both motion capture and Kinect data and compare the results of different features. The experiments show that our approach can accurately classify actions with both sources of data. For 40 actions of motion capture data, we achieve 92.7% classification accuracy with real-time performance.
引用
收藏
页码:640 / 651
页数:12
相关论文
共 50 条
  • [31] Improving object classification robustness in RGB-D using adaptive SVMs
    Nuricumbo, Jorge Rene
    Ali, Haider
    Marton, Zoltan-Csaba
    Grzegorzek, Marcin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (12) : 6829 - 6847
  • [32] Performance evaluation of deep feature learning for RGB-D image/video classification
    Shao, Ling
    Cai, Ziyun
    Liu, Li
    Lu, Ke
    INFORMATION SCIENCES, 2017, 385 : 266 - 283
  • [33] Improving object classification robustness in RGB-D using adaptive SVMs
    Jorge René Nuricumbo
    Haider Ali
    Zoltán-Csaba Márton
    Marcin Grzegorzek
    Multimedia Tools and Applications, 2016, 75 : 6829 - 6847
  • [34] RGB-D Classification using Feature Selection on the Combination of Different Features
    Khan, Wasif
    Phaisangittisagul, Ekachai
    Ali, Luqman
    Gansawat, Duangrat
    Kumazawa, Itsuo
    2017 8TH INTERNATIONAL CONFERENCE OF INFORMATION AND COMMUNICATION TECHNOLOGY FOR EMBEDDED SYSTEMS (IC-ICTES), 2017,
  • [35] Dynamic gesture classification using skeleton model on RGB-D data
    Tamura, Y.
    Umetani, T.
    Kashima, N.
    Nakamura, H.
    2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
  • [36] RGB-D Scene Classification via Multi-modal Feature Learning
    Ziyun Cai
    Ling Shao
    Cognitive Computation, 2019, 11 : 825 - 840
  • [37] Learning Multiviewpoint Context-Aware Representation for RGB-D Scene Classification
    Zheng, Yingbin
    Ye, Hao
    Wang, Li
    Pu, Jian
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (01) : 30 - 34
  • [38] RGB-D Scene Classification via Multi-modal Feature Learning
    Cai, Ziyun
    Shao, Ling
    COGNITIVE COMPUTATION, 2019, 11 (06) : 825 - 840
  • [39] Mass and volume estimation of diverse kimchi cabbage forms using RGB-D vision and machine learning
    Yang, Hae-Il
    Min, Sung-Gi
    Yang, Ji-Hee
    Eun, Jong-Bang
    Chung, Young-Bae
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2024, 218
  • [40] Recognizing RGB Images by Learning from RGB-D Data
    Chen, Lin
    Li, Wen
    Xu, Dong
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1418 - 1425