By using a multiple fixed point theorem (Avery-Peterson fixed point theorem) for cones, some criteria are established for the existence of three positive periodic solutions for a class of higher-dimensional functional differential equations with impulses on time scales of the following form: x(Delta)(t) = A(t)x(t) + f(t, x(t)), t not equal t(j), t is an element of T, x(t(j)(+)) = x(t(j)(-)) + I-j(x(t(j))), where A (t) = (a(ij)(t))(nxn) is a nonsingular matrix with continuous real-valued functions as its elements. Finally, an example is presented to illustrate the feasibility and effectiveness of the results. Copyright (C) 2009 Y. Li and M. Hu.
机构:
Univ Estadual Paulista UNESP, Inst Geociencias & Ciencias Exatas, Dept Matemat, Rio Claro, SP, BrazilUniv Estadual Paulista UNESP, Inst Geociencias & Ciencias Exatas, Dept Matemat, Rio Claro, SP, Brazil
Afonso, Suzete M.
Furtado, Andre L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estado Rio de Janeiro, Dept Anal Matemat, Inst Matemat & Estat, Rio De Janeiro, BrazilUniv Estadual Paulista UNESP, Inst Geociencias & Ciencias Exatas, Dept Matemat, Rio Claro, SP, Brazil