Upper Bounds on Number of Steals in Rooted Trees

被引:3
|
作者
Leiserson, Charles E. [1 ]
Schardl, Tao B. [1 ]
Suksompong, Warut [2 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 32 Vassar St, Cambridge, MA 02139 USA
[2] Stanford Univ, Dept Comp Sci, 353 Serra Mall, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Work stealing; Parallel algorithm; Extremal combinatorics; Binomial coefficient;
D O I
10.1007/s00224-015-9613-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Inspired by applications in parallel computing, we analyze the setting of work stealing in multithreaded computations. We obtain tight upper bounds on the number of steals when the computation can be modeled by rooted trees. In particular, we show that if the computation with n processors starts with one processor having a complete k-ary tree of height h (and the remaining n-1 processors having nothing), the maximum possible number of steals is Sigma(n)(n=1) (k - 1)(i) ((h)(i)),
引用
收藏
页码:223 / 240
页数:18
相关论文
共 50 条
  • [41] Some Upper Bounds Related with Domination Number
    Gu Z.
    Meng J.
    Zhang Z.
    Wan J.E.
    Gu, Z. (guzhao1987@gmail.com), 1600, Springer Science and Business Media Deutschland GmbH (01): : 217 - 225
  • [42] Upper bounds for ropelength as a function of crossing number
    Cantarella, J
    Faber, XWC
    Mullikin, CA
    TOPOLOGY AND ITS APPLICATIONS, 2004, 135 (1-3) : 253 - 264
  • [43] Spectral upper bounds for the Grundy number of a graph
    Assis, Thiago
    Coutinho, Gabriel
    Juliano, Emanuel
    DISCRETE MATHEMATICS, 2025, 348 (03)
  • [44] Algorithmic upper bounds for graph geodetic number
    Ahmad T. Anaqreh
    Boglárka G.-Tóth
    Tamás Vinkó
    Central European Journal of Operations Research, 2022, 30 : 1221 - 1237
  • [45] Spectral upper bounds for the Grundy number of a graph
    Assis, Thiago
    Coutinho, Gabriel
    Juliano, Emanuel
    arXiv,
  • [46] UPPER BOUNDS ON THE SEMITOTAL FORCING NUMBER OF GRAPHS
    Liang, Yi-Ping
    Chen, Jie
    Xu, Shou-Jun
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (02) : 177 - 185
  • [47] Sharp upper bounds on the number of the scattering poles
    Stefanov, P
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 231 (01) : 111 - 142
  • [48] Upper bounds of proper connection number of graphs
    Fei Huang
    Xueliang Li
    Shujing Wang
    Journal of Combinatorial Optimization, 2017, 34 : 165 - 173
  • [49] NEW UPPER BOUNDS FOR THE NUMBER OF DIVISORS FUNCTION
    De Koninck, Jean-Marie
    Letendre, Patrick
    COLLOQUIUM MATHEMATICUM, 2020, 162 (01) : 23 - 52
  • [50] On improved upper bounds on the transversal number of hypergraphs
    Henning, Michael A.
    Rad, Nader Jafari
    Kamarulhaili, Hailiza
    Teh, Wen Chean
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2023, 85 : 350 - 359