Multisynchronization for Coupled Multistable Fractional-Order Neural Networks via Impulsive Control

被引:7
|
作者
Zhang, Jin-E [1 ]
机构
[1] Hubei Normal Univ, Huangshi 435002, Hubei, Peoples R China
关键词
GENERALIZED MULTI-SYNCHRONIZATION; STABILITY ANALYSIS; CONSENSUS; SYSTEMS;
D O I
10.1155/2017/9323172
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every subnetwork of a class of coupled fractional-order neural networks consisting of N identical subnetworks can have (r + 1)(n) locally Mittag-Leffler stable equilibria. In addition, we give some algebraic criteria for ascertaining the static multisynchronization of coupled fractional-order neural networks with fixed and switching topologies, respectively. The obtained theoretical results characterize multisynchronization feature for multistable control systems. Two numerical examples are given to verify the superiority of the proposed results.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Projective Multi-Synchronization of Fractional-order Complex-valued Coupled Multi-stable Neural Networks with Impulsive Control
    Udhayakumara, K.
    Rakkiyappan, R.
    Rihan, Fathalla A.
    Banerjee, Santo
    NEUROCOMPUTING, 2022, 467 : 392 - 405
  • [42] Impulsive control for fractional-order chaotic systems
    Zhong Qi-Shui
    Bao Jing-Fu
    Yu Yong-Bin
    Liao Xiao-Feng
    CHINESE PHYSICS LETTERS, 2008, 25 (08) : 2812 - 2815
  • [43] Exponential synchronization of fractional-order multilayer coupled neural networks with reaction-diffusion terms via intermittent control
    Xu, Yao
    Sun, Fu
    Li, Wenxue
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (23): : 16019 - 16032
  • [44] Bipartite leaderless synchronization of fractional-order coupled neural networks via edge-based adaptive pinning control
    Sun, Yu
    Hu, Cheng
    Yu, Juan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (03): : 1303 - 1317
  • [45] Exponential synchronization of fractional-order multilayer coupled neural networks with reaction-diffusion terms via intermittent control
    Yao Xu
    Fu Sun
    Wenxue Li
    Neural Computing and Applications, 2021, 33 : 16019 - 16032
  • [46] Synchronization of Fractional-order Neural Networks via Intermittent Quantized Control: Optimal Algorithm
    Jing, Taiyan
    He, Tongyang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (07)
  • [47] Lag synchronization for fractional-order memristive neural networks via period intermittent control
    Lingzhong Zhang
    Yongqing Yang
    Fei wang
    Nonlinear Dynamics, 2017, 89 : 367 - 381
  • [48] Synchronization Criteria for Delayed Fractional-Order Neural Networks via Linear Feedback Control
    Fan, Yingjie
    Huang, Xia
    Wang, Xiaohong
    Yao, Lan
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4280 - 4284
  • [49] Synchronization of fractional-order memristive recurrent neural networks via aperiodically intermittent control
    Zhang, Shuai
    Yang, Yongqing
    Sui, Xin
    Zhang, Yanna
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (11) : 11717 - 11734
  • [50] Lag synchronization for fractional-order memristive neural networks via period intermittent control
    Zhang, Lingzhong
    Yang, Yongqing
    Wang, Fei
    NONLINEAR DYNAMICS, 2017, 89 (01) : 367 - 381