DRGCN: Dual Residual Graph Convolutional Network for Hyperspectral Image Classification

被引:11
|
作者
Chen, Rong [1 ]
Li, Guanghui [1 ]
Dai, Chenglong [1 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Convolution; Principal component analysis; Hyperspectral imaging; Degradation; Data mining; Convolutional neural networks; Graph convolutional network (GCN); graph representation; hyperspectral image (HSI) classification; residual learning;
D O I
10.1109/LGRS.2022.3171536
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recently, graph convolutional network (GCN) has drawn increasing attention in hyperspectral image (HSI) classification, as it can process arbitrary non-Euclidean data. However, dynamic GCN that refines the graph heavily relies on the graph embedding in the previous layer, which will result in performance degradation when the embedding contains noise. In this letter, we propose a novel dual residual graph convolutional network (DRGCN) for HSI classification that integrates two adjacency matrices of dual GCN. In detail, one GCN applies a soft adjacency matrix to extract spatial features, whereas the other utilizes the dynamic adjacency matrix to extract global context-aware features. Subsequently, the features extracted by dual GCN are fused to make full use of the complementary and correlated information among two graph representations. Moreover, we introduce residual learning to optimize graph convolutional layers during the training process, to alleviate the over-smoothing problem. The advantage of dual GCN is that it can extract robust and discriminative features from HSIs. Extensive experiments on four HSI datasets, including Indian Pines, Pavia University, Salinas, and Houston University, demonstrate the effectiveness and superiority of our proposed DRGCN, even with small-sized training data.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Diversity-Connected Graph Convolutional Network for Hyperspectral Image Classification
    Ding, Yun
    Chong, Yanwen
    Pan, Shaoming
    Zheng, Chunhou
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [22] HyperSpectral Image Classification Based on Spectral Attention Graph Convolutional Network
    Kong, Yi
    Ji, Dingzhe
    Cheng, Yuhu
    Wang, Xuesong
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2023, 45 (04) : 1426 - 1434
  • [23] Hyperspectral image classification using graph convolutional network: A comprehensive review
    Wu, Guoyong
    Al-qaness, Mohammed A. A.
    Al-Alimi, Dalal
    Dahou, Abdelghani
    Abd Elaziz, Mohamed
    Ewees, Ahmed A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 257
  • [24] Hyperspectral Image Classification Based on Deep Attention Graph Convolutional Network
    Bai, Jing
    Ding, Bixiu
    Xiao, Zhu
    Jiao, Licheng
    Chen, Hongyang
    Regan, Amelia C.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [25] Semisupervised Classification of Hyperspectral Image Based on Graph Convolutional Broad Network
    Wang, Haoyu
    Cheng, Yuhu
    Chen, C. L. Philip
    Wang, Xuesong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 2995 - 3005
  • [26] Hyperspectral image classification with dual attention dense residual network
    Gao, Hongmin
    Wang, Mingxia
    Yang, Yao
    Cao, Xueying
    Li, Chenming
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (15) : 5604 - 5625
  • [27] Hyperspectral and SAR Image Classification via Graph Convolutional Fusion Network
    Deng, Bin
    Duan, Puhong
    Lu, Xukun
    Wang, Zihao
    Kang, Xudong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [28] RESIDUAL DENSE ASYMMETRIC CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Meng, Zhe
    Zhang, Junjie
    Zhao, Feng
    Liu, Hanqiang
    Chang, Zhenhui
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3159 - 3162
  • [29] Graph Convolutional Network With Relaxed Collaborative Representation for Hyperspectral Image Classification
    Zheng, Hengyi
    Su, Hongjun
    Wu, Zhaoyue
    Paoletti, Mercedes E.
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [30] Graph Convolutional Networks for Hyperspectral Image Classification
    Hong, Danfeng
    Gao, Lianru
    Yao, Jing
    Zhang, Bing
    Plaza, Antonio
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (07): : 5966 - 5978