In 2005, the second author and Todorov introduced an upper bound on the finitistic dimension of an Artin algebra, now known as the phi-dimension. The phi-dimension conjecture states that this upper bound is always finite, a fact that would imply the finitistic dimension conjecture. In this paper, we present a counterexample to the phi-dimension conjecture and explain where it comes from. We also discuss implications for further research and the finitistic dimension conjecture.
机构:
Tel Aviv Univ, Sch Math Sci, Tel Aviv, IsraelTel Aviv Univ, Sch Math Sci, Tel Aviv, Israel
Buhovsky, Lev
Humiliere, Vincent
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Diderot, Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche,IMJ PRG, F-75005 Paris, FranceTel Aviv Univ, Sch Math Sci, Tel Aviv, Israel
Humiliere, Vincent
Seyfaddini, Sobhan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Diderot, Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche,IMJ PRG, F-75005 Paris, FranceTel Aviv Univ, Sch Math Sci, Tel Aviv, Israel