Numerical spurious solutions in the effective mass approximation

被引:39
|
作者
Cartoixà, X
Ting, DZY
McGill, TC [1 ]
机构
[1] CALTECH, TJ Watson Jr Lab Appl Phys 128 95, Pasadena, CA 91125 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
关键词
D O I
10.1063/1.1555833
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have characterized a class of spurious solutions that appears when using the finite difference method to solve the effective mass approximation equations. We find that the behavior of these solutions as predicted by our model shows excellent agreement with numerical results. Using this interpretation we find a set of analytical expressions for conditions that the Luttinger parameters must satisfy to avoid spurious solutions. Finally, we use these conditions to check commonly used sets of parameters for their potential for generating this class of spurious solutions. (C) 2003 American Institute of Physics.
引用
收藏
页码:3974 / 3981
页数:8
相关论文
共 50 条
  • [31] Numerical approximation of solutions of the equations of quasistatic electroporoelasticity
    Hu, Yu
    Meir, Amnon Jacob
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (06) : 1929 - 1947
  • [32] A METAHEURISTIC FOR A NUMERICAL APPROXIMATION TO THE MASS TRANSFER PROBLEM
    Avendano-Garrido, Martha L.
    Gabriel-Arguelles, Jose R.
    Quintana-Torres, Ligia
    Mezura-Montes, Efren
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2016, 26 (04) : 757 - 766
  • [33] Classical and quantum solutions of the planar accumulation layer problem within the parabolic effective-mass approximation
    Klochikhin, A. A.
    Davydov, V. Yu.
    Strashkova, I. Yu.
    Gwo, S.
    PHYSICAL REVIEW B, 2007, 76 (23):
  • [34] An Effective Criterion to Prevent Injection Test Numerical Simulation from Spurious Oscillations
    Verga, F.
    Viberti, D.
    Salina Borello, Eloisa
    Serazio, C.
    OIL AND GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2014, 69 (04): : 633 - 651
  • [35] Bifurcation of homoclinic structures .1. Finite difference approximation and mechanisms for spurious solutions
    Gerling, J
    Jurgens, H
    Peitgen, HO
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (02): : 287 - 317
  • [36] SPURIOUS NUMERICAL REFRACTION
    CATHERS, B
    BATES, S
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1995, 21 (11) : 1049 - 1066
  • [37] Numerical solutions of the time-dependent Schrodinger equation with position-dependent effective mass
    Gao, Yijin
    Mayfield, Jay
    Luo, Songting
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (04) : 3222 - 3245
  • [38] ON SPURIOUS ASYMPTOTIC NUMERICAL-SOLUTIONS OF EXPLICIT RUNGE-KUTTA METHODS
    GRIFFITHS, DF
    SWEBY, PK
    YEE, HC
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1992, 12 (03) : 319 - 338
  • [39] SPURIOUS NUMERICAL-SOLUTIONS IN HIGHER-DIMENSIONAL DISCRETE-SYSTEMS
    HATAUE, I
    AIAA JOURNAL, 1995, 33 (01) : 163 - 164
  • [40] SPURIOUS SOLUTIONS IN FEW-BODY EQUATIONS .2. NUMERICAL INVESTIGATIONS
    ADHIKARI, SK
    PHYSICAL REVIEW C, 1979, 19 (06): : 2121 - 2126