Perfect (super) Edge-Magic Crowns

被引:3
|
作者
Lopez, S. C. [1 ]
Muntaner-Batle, F. A. [2 ]
Prabu, M. [3 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat, C Esteve Terrades 5, Castelldefels 08860, Spain
[2] Univ Newcastle, Graph Theory & Applicat Res Grp, Sch Elect Engn & Comp Sci, Fac Engn & Built Environm, Newcastle, NSW 2308, Australia
[3] British Univ Vietnam, Hanoi, Vietnam
关键词
Edge-magic; Super edge-magic; Valence; Perfect (super) edge-magic; LABELINGS;
D O I
10.1007/s00025-016-0643-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is called edge-magic if there is a bijective function f from the set of vertices and edges to the set {1, 2, ...,vertical bar V(G)vertical bar + vertical bar E(G)vertical bar} such that the sum f (x) + f(xy) + f(y) for any xy in E(G) is constant. Such a function is called an edge-magic labelling of G and the constant is called the valence. An edge-magic labelling with the extra property that f(V(G)) = {1, 2, ..., vertical bar V (G)vertical bar} is called super edge-magic. A graph is called perfect (super) edge-magic if all theoretical (super) edge-magic valences are possible. In this paper we continue the study of the valences for (super) edge-magic labelings of crowns C-m circle dot (K) over bar (n) and we prove that the crowns are perfect (super) edge-magic when m = pq where p and q are different odd primes. We also provide a lower bound for the number of different valences of C-m circle dot (K) over bar (n), in terms of the prime factors of m.
引用
收藏
页码:1459 / 1471
页数:13
相关论文
共 50 条
  • [11] Super edge-magic deficiency of graphs
    Baig, A. Q.
    Imran, M.
    Javaid, I.
    Semanicova-Fenovcikova, Andrea
    UTILITAS MATHEMATICA, 2012, 87 : 355 - 364
  • [12] On the Super Edge-Magic Deficiency of Forests
    Krisnawati, Vira Hari
    Ngurah, Anak Agung Gede
    Hidayat, Noor
    Alghofari, Abdul Rouf
    PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: DEEPENING MATHEMATICAL CONCEPTS FOR WIDER APPLICATION THROUGH MULTIDISCIPLINARY RESEARCH AND INDUSTRIES COLLABORATIONS, 2019, 2192
  • [13] On the super edge-magic deficiencies of graphs
    Ngurah, A. A. G.
    Baskoro, E. T.
    Simanjuntak, R.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 40 : 3 - 14
  • [14] On the super edge-magic deficiency of graphs
    Figueroa-Centeno, RM
    Ichishima, R
    Muntaner-Batle, FA
    ARS COMBINATORIA, 2006, 78 : 33 - 45
  • [15] On the construction of super edge-magic total graphs
    Darmaji
    Wahyudi, S.
    Rinurwati
    Saputro, S. W.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (01) : 301 - 309
  • [16] Super edge-magic total labeling of a tree
    Ali, K.
    Hussain, M.
    Razzaq, A.
    UTILITAS MATHEMATICA, 2013, 91 : 355 - 364
  • [17] On super edge-magic labeling of some graphs
    Park, Ji Yeon
    Choi, Jin Hyuk
    Bae, Jae-Hyeong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (01) : 11 - 21
  • [18] Super edge-magic strength of some trees
    Swaminathan, V.
    Jeyanthi, P.
    UTILITAS MATHEMATICA, 2007, 72 : 199 - 210
  • [19] On the super edge-magic deficiency of a star forest
    Baig, A. Q.
    Baskoro, Edy Tri
    Semanicova-Fenovcikova, Andrea
    ARS COMBINATORIA, 2014, 115 : 3 - 12
  • [20] On the new families of (super) edge-magic graphs
    Ngurah, A. A. G.
    Baskoro, E. T.
    Simanjuntak, R.
    UTILITAS MATHEMATICA, 2007, 74 : 111 - 120