E2CM: An Evolutionary Version of Evidential C-Means Clustering Algorithm

被引:3
|
作者
Su, Zhi-gang [1 ]
Zhou, Hong-yu [1 ]
Wang, Pei-hong [1 ]
Zhao, Gang [1 ]
Zhao, Ming [2 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Nanjing, Jiangsu, Peoples R China
[2] Yunnan Power Grid Co Ltd, Res Inst, Kunming, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Dempster-Shafer theory; Belief functions; Evidential clustering; Swarm intelligent algorithm;
D O I
10.1007/978-3-319-99383-6_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to propose an Evolutionary version of Evidential C-Mean (E2CM) clustering method based on a Variable string length Artificial Bee Colony (VABC) algorithm. In the E2CM, the centers of clusters are encoded in form of a population of strings with variable length to search optimal number of clusters as well as locations of centers based on the VABC, by minimizing objective function non-specificity, in which the assignment of objects to the population of cluster centers are performed by the ECM. One significant merit of the E2CM is that it can automatically create a credal partition without requiring the number of clusters as a priority. A numerical example is used to intuitively verify our conclusions.
引用
收藏
页码:234 / 242
页数:9
相关论文
共 50 条
  • [41] An enhanced possibilistic C-Means clustering algorithm EPCM
    Xie, Zhenping
    Wang, Shitong
    Chung, F. L.
    SOFT COMPUTING, 2008, 12 (06) : 593 - 611
  • [42] A Possibilistic Multivariate Fuzzy c-Means Clustering Algorithm
    Himmelspach, Ludmila
    Conrad, Stefan
    SCALABLE UNCERTAINTY MANAGEMENT, SUM 2016, 2016, 9858 : 338 - 344
  • [43] FCM - THE FUZZY C-MEANS CLUSTERING-ALGORITHM
    BEZDEK, JC
    EHRLICH, R
    FULL, W
    COMPUTERS & GEOSCIENCES, 1984, 10 (2-3) : 191 - 203
  • [44] The new Image Segmentation Algorithm Using Adaptive Evolutionary Programming and Fuzzy C-means Clustering
    Liu Fang
    VISUAL INFORMATION PROCESSING XX, 2011, 8056
  • [45] Improvements to the relational fuzzy c-means clustering algorithm
    Khalilia, Mohammed A.
    Bezdek, James
    Popescu, Mihail
    Keller, James M.
    PATTERN RECOGNITION, 2014, 47 (12) : 3920 - 3930
  • [46] FCM: THE FUZZY c-MEANS CLUSTERING ALGORITHM.
    Bezdek, James C.
    Ehrlich, Robert
    Full, William
    1600, (10): : 2 - 3
  • [47] Generalized Adaptive Possibilistic C-Means Clustering Algorithm
    Xenaki, Spyridoula
    Koutroumbas, Konstantinos
    Rontogiannis, Athanasios
    10TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE (SETN 2018), 2018,
  • [48] Improvement and optimization of a Fuzzy C-Means clustering algorithm
    Shen, Y
    Shi, H
    Zhang, JQ
    IMTC/2001: PROCEEDINGS OF THE 18TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-3: REDISCOVERING MEASUREMENT IN THE AGE OF INFORMATICS, 2001, : 1430 - 1433
  • [49] A New Intuitionistic Fuzzy c-means Clustering Algorithm
    Jiang, Hui
    Zhou, Xiaoguang
    Feng, Baisheng
    Zhang, Mingdong
    PROCEEDINGS 2013 INTERNATIONAL CONFERENCE ON MECHATRONIC SCIENCES, ELECTRIC ENGINEERING AND COMPUTER (MEC), 2013, : 1116 - 1119
  • [50] An enhanced possibilistic C-Means clustering algorithm EPCM
    Zhenping Xie
    Shitong Wang
    F. L. Chung
    Soft Computing, 2008, 12 : 593 - 611