E2CM: An Evolutionary Version of Evidential C-Means Clustering Algorithm

被引:3
|
作者
Su, Zhi-gang [1 ]
Zhou, Hong-yu [1 ]
Wang, Pei-hong [1 ]
Zhao, Gang [1 ]
Zhao, Ming [2 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Nanjing, Jiangsu, Peoples R China
[2] Yunnan Power Grid Co Ltd, Res Inst, Kunming, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Dempster-Shafer theory; Belief functions; Evidential clustering; Swarm intelligent algorithm;
D O I
10.1007/978-3-319-99383-6_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to propose an Evolutionary version of Evidential C-Mean (E2CM) clustering method based on a Variable string length Artificial Bee Colony (VABC) algorithm. In the E2CM, the centers of clusters are encoded in form of a population of strings with variable length to search optimal number of clusters as well as locations of centers based on the VABC, by minimizing objective function non-specificity, in which the assignment of objects to the population of cluster centers are performed by the ECM. One significant merit of the E2CM is that it can automatically create a credal partition without requiring the number of clusters as a priority. A numerical example is used to intuitively verify our conclusions.
引用
收藏
页码:234 / 242
页数:9
相关论文
共 50 条
  • [1] ECM:: An evidential version of the fuzzy c-means algorithm
    Masson, Marie-Helene
    Denoeux, T.
    PATTERN RECOGNITION, 2008, 41 (04) : 1384 - 1397
  • [2] NECM: Neutrosophic evidential c-means clustering algorithm
    Guo, Yanhui
    Sengur, Abdulkadir
    NEURAL COMPUTING & APPLICATIONS, 2015, 26 (03): : 561 - 571
  • [3] NECM: Neutrosophic evidential c-means clustering algorithm
    Yanhui Guo
    Abdulkadir Sengur
    Neural Computing and Applications, 2015, 26 : 561 - 571
  • [4] Transfer Evidential C-Means Clustering
    Jiao, Lianmeng
    Wang, Feng
    Pan, Quan
    BELIEF FUNCTIONS: THEORY AND APPLICATIONS (BELIEF 2021), 2021, 12915 : 47 - 55
  • [5] CECM: Constrained evidential C-means algorithm
    Antoine, V.
    Quost, B.
    Masson, M. -H.
    Denoeux, T.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (04) : 894 - 914
  • [6] RECM: Relational evidential c-means algorithm
    Masson, Marie-Helene
    Denoeux, Thierry
    PATTERN RECOGNITION LETTERS, 2009, 30 (11) : 1015 - 1026
  • [7] A Novel Evolutionary Kernel Intuitionistic Fuzzy C-means Clustering Algorithm
    Lin, Kuo-Ping
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (05) : 1074 - 1087
  • [8] An improved C-means clustering algorithm
    Pi, Dechang
    Xian, Chuhua
    Qin, Xiaolin
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2008, 23 (01): : 43 - 49
  • [9] A modified C-means clustering algorithm
    El-Mouadib, Faraj A.
    Zubi, Zakaria Suliman
    Talhi, Halima S.
    PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON DATA NETWORKS, COMMUNICATIONS, COMPUTERS (DNCOCO '09), 2009, : 85 - +
  • [10] Vague C-means clustering algorithm
    Xu, Chao
    Zhang, Peilin
    Li, Bing
    Wu, Dinghai
    Fan, Hongbo
    PATTERN RECOGNITION LETTERS, 2013, 34 (05) : 505 - 510