Metal-oxide-semiconductor tunnel diodes with gate oxides, in the range of 2.5-3.5 nm, grown either on 25 or 3 keV nitrogen-implanted Si substrates at (0.3 or 1) x10(15) cm(-2) dose, respectively, are investigated. The dependence of N-2(+) ion implant energy on the electrical quality of the growing oxide layers is studied through capacitance, equivalent parallel conductance, and gate current measurements. Superior electrical characteristics in terms of interface state trap density, leakage current, and breakdown fields are found for oxides obtained through 3 keV nitrogen implants. These findings together with the full absence of any extended defect in the silicon substrate make the low-energy nitrogen implantation technique an attractive option for reproducible low-cost growth of nanometer-thick gate oxides. (C) 2003 American Institute of Physics.