Asymptotically compatible schemes for space-time nonlocal diffusion equations

被引:12
|
作者
Chen, An [1 ]
Du, Qiang [2 ]
Li, Changpin [3 ]
Zhou, Zhi [2 ]
机构
[1] Guilin Univ Technol, Coll Sci, Guilin 541004, Guangxi, Peoples R China
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[3] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Space-time nonlocal equation; Well-posedness; Local limit; Fourier spectral method; Quadrature-based finite difference; Asymptotically compatibility; FRACTIONAL DIFFUSION; WAVE-EQUATIONS; APPROXIMATIONS; LAPLACIAN; MODELS;
D O I
10.1016/j.chaos.2017.03.061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a space-time nonlocal diffusion model that reduces to the classical diffusion equation in the local limit. Firstly, we show the uniqueness and existence of the weak solution of the nonlocal model, and study the local limit of the nonlocal model as horizon parameters approach zero. Particularly, it is shown that the convergence is uniform at a rate of O (delta + sigma(2)), under certain regularity assumptions on initial and source data. Next we propose a fully discrete scheme, by exploiting the quadrature-based finite difference method in time and the Fourier spectral method in space, and show its stability. The numerical scheme is proved to be asymptotically compatible so that it preserves the local limiting behavior at the discrete level. Numerical experiments are provided to illustrate the theoretical results. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:361 / 371
页数:11
相关论文
共 50 条
  • [21] Regularity estimates for nonlocal space-time master equations in bounded domains
    Animesh Biswas
    Pablo Raúl Stinga
    Journal of Evolution Equations, 2021, 21 : 503 - 565
  • [22] Asymptotically compatible discretization of multidimensional nonlocal diffusion models and approximation of nonlocal Green's functions
    Du, Qiang
    Tao, Yunzhe
    Tian, Xiaochuan
    Yang, Jiang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (02) : 607 - 625
  • [23] Compact Difference Schemes for a Class of Space-time Fractional Differential Equations
    Feng, Qinghua
    ENGINEERING LETTERS, 2019, 27 (02) : 269 - 277
  • [24] Arbitrary dimension convection-diffusion schemes for space-time discretizations
    Bank, Randolph E.
    Vassilevski, Panayot S.
    Zikatanov, Ludmil T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 310 : 19 - 31
  • [25] Space-time fractional diffusion equations in d-dimensions
    Lenzi, E. K.
    Evangelista, L. R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (08)
  • [26] ASYMPTOTICALLY COMPATIBLE FOURIER SPECTRAL APPROXIMATIONS OF NONLOCAL ALLEN-CAHN EQUATIONS
    Du, Qiang
    Yang, Jiang
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) : 1899 - 1919
  • [27] Reaction-diffusion equations in space-time periodic media
    Nadin, Gregoire
    COMPTES RENDUS MATHEMATIQUE, 2007, 345 (09) : 489 - 493
  • [28] Space-time chaos in a system of reaction-diffusion equations
    Zaitseva, M. F.
    Magnitskii, N. A.
    DIFFERENTIAL EQUATIONS, 2017, 53 (11) : 1519 - 1523
  • [29] Space-Time Domain Decomposition for Mixed Formulations of Diffusion Equations
    Thi-Thao-Phuong Hoang
    Jaffre, Jerome
    Japhet, Caroline
    Kern, Michel
    Roberts, Jean
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 295 - 304