OSGA: a fast subgradient algorithm with optimal complexity

被引:13
|
作者
Neumaier, Arnold [1 ]
机构
[1] Univ Vienna, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
关键词
Complexity bound; Convex optimization; Optimal subgradient method; Large-scale optimization; Nesterov's optimal method; Nonsmooth optimization; Optimal first-order method; Smooth optimization; Strongly convex; GRADIENT METHODS; CONVEX; MINIMIZATION; SPARSE;
D O I
10.1007/s10107-015-0911-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents an algorithm for approximately minimizing a convex function in simple, not necessarily bounded convex, finite-dimensional domains, assuming only that function values and subgradients are available. No global information about the objective function is needed apart from a strong convexity parameter (which can be put to zero if only convexity is known). The worst case number of iterations needed to achieve a given accuracy is independent of the dimension and-apart from a constant factor-best possible under a variety of smoothness assumptions on the objective function.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [21] A fast algorithm for optimal bit allocation
    Lee, WY
    Ra, JB
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '97, PTS 1-2, 1997, 3024 : 167 - 175
  • [22] FAST ALGORITHM FOR OPTIMAL LAYER ASSIGNMENT
    KUO, YS
    CHERN, TC
    SHIH, WK
    INTEGRATION-THE VLSI JOURNAL, 1989, 7 (03) : 231 - 245
  • [23] An optimal subgradient algorithm for large-scale bound-constrained convex optimization
    Masoud Ahookhosh
    Arnold Neumaier
    Mathematical Methods of Operations Research, 2017, 86 : 123 - 147
  • [24] Subgradient Algorithm on Riemannian Manifolds
    O. P. Ferreira
    P. R. Oliveira
    Journal of Optimization Theory and Applications, 1998, 97 : 93 - 104
  • [25] Subgradient algorithm on Riemannian manifolds
    Ferreira, OP
    Oliveira, PR
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 97 (01) : 93 - 104
  • [26] OPTIMAL SAMPLE COMPLEXITY OF SUBGRADIENT DESCENT FOR AMPLITUDE FLOW VIA NON-LIPSCHITZ MATRIX CONCENTRATION
    Hand, Paul
    Leong, Oscar
    Voroninski, Vladislav
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (07) : 2035 - 2047
  • [27] FAST ADAPTIVE PARAFAC DECOMPOSITION ALGORITHM WITH LINEAR COMPLEXITY
    Viet-Dung Nguyen
    Abed-Meraim, Karim
    Nguyen Linh-Trung
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 6235 - 6239
  • [28] A fast fixed-point algorithm for complexity pursuit
    Shi, ZW
    Tang, HW
    Tang, YY
    NEUROCOMPUTING, 2005, 64 : 529 - 536
  • [29] Fast algorithm for determining the linear complexity in periodic sequences
    Zhou, Jianqin
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2007, 35 (02): : 43 - 46
  • [30] A fast algorithm for determining the linear complexity of periodic sequences
    Wei, SM
    Chen, GL
    Xia, GZ
    INFORMATION SECURITY AND CRYPTOLOGY, PROCEEDINGS, 2005, 3822 : 202 - 209