OSGA: a fast subgradient algorithm with optimal complexity

被引:13
|
作者
Neumaier, Arnold [1 ]
机构
[1] Univ Vienna, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
关键词
Complexity bound; Convex optimization; Optimal subgradient method; Large-scale optimization; Nesterov's optimal method; Nonsmooth optimization; Optimal first-order method; Smooth optimization; Strongly convex; GRADIENT METHODS; CONVEX; MINIMIZATION; SPARSE;
D O I
10.1007/s10107-015-0911-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents an algorithm for approximately minimizing a convex function in simple, not necessarily bounded convex, finite-dimensional domains, assuming only that function values and subgradients are available. No global information about the objective function is needed apart from a strong convexity parameter (which can be put to zero if only convexity is known). The worst case number of iterations needed to achieve a given accuracy is independent of the dimension and-apart from a constant factor-best possible under a variety of smoothness assumptions on the objective function.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] OSGA: a fast subgradient algorithm with optimal complexity
    Arnold Neumaier
    Mathematical Programming, 2016, 158 : 1 - 21
  • [2] A subgradient algorithm for low complexity DMT PAR minimization
    Erdogan, A
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PROCEEDINGS: AUDIO AND ELECTROACOUSTICS SIGNAL PROCESSING FOR COMMUNICATIONS, 2004, : 1077 - 1080
  • [3] Fast and low complexity blind equalization via subgradient projections
    Erdogan, AT
    Kizilkale, C
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (07) : 2513 - 2524
  • [4] A fast subgradient algorithm in image super-resolution
    Lazzaro, D.
    Piccolomoini, E. Loli
    Ruggiero, V.
    Zama, F.
    7TH INTERNATIONAL CONFERENCE ON NEW COMPUTATIONAL METHODS FOR INVERSE PROBLEMS, 2017, 904
  • [5] An Optimal Subgradient Algorithm with Subspace Search for Costly Convex Optimization Problems
    Ahookhosh, Masoud
    Neumaier, Arnold
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (03) : 883 - 910
  • [6] An Optimal Subgradient Algorithm with Subspace Search for Costly Convex Optimization Problems
    Masoud Ahookhosh
    Arnold Neumaier
    Bulletin of the Iranian Mathematical Society, 2019, 45 : 883 - 910
  • [7] A novel low complexity fast algorithm for effectively designing optimal mixed-level experiments
    Elsawah, A. M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (01) : 315 - 343
  • [8] A SUBGRADIENT PROJECTION ALGORITHM
    SREEDHARAN, VP
    JOURNAL OF APPROXIMATION THEORY, 1982, 35 (02) : 111 - 126
  • [9] A REDUCED SUBGRADIENT ALGORITHM
    BIHAIN, A
    NGUYEN, VH
    STRODIOT, JJ
    MATHEMATICAL PROGRAMMING STUDY, 1987, 30 : 127 - 149
  • [10] Fast CU Algorithm and Complexity Control for HEVC
    Fang, Jiunn-Tsair
    Kuo, Chien-Hao
    Lai, Chang-Rui
    Chang, Pao-Chi
    2015 IEEE 4TH GLOBAL CONFERENCE ON CONSUMER ELECTRONICS (GCCE), 2015, : 300 - 301