Temporal Feature Selection for Time-series Prediction

被引:0
|
作者
Hido, Shohei [1 ]
Morimura, Tetsuro [1 ]
机构
[1] IBM Res Corp, Tokyo, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a feature selection method for multi-variate time-series prediction. It aims to use the best sliding window size and delay for each explanatory variable, which are usually fixed. The idea is to convert the original time-series into a set of cumulative sum with different length. The combinations of cumulative sum variables obtaining nonzero weights in sparse learning algorithms represent the optimal temporal effects from explanatory variables to the target variable. Experiments show that the method performs better than conventional methods in regression problems.
引用
收藏
页码:3557 / 3560
页数:4
相关论文
共 50 条
  • [31] PREDICTION OF CHAOTIC TIME-SERIES WITH NOISE
    IKEGUCHI, T
    AIHARA, K
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1995, E78A (10) : 1291 - 1298
  • [32] NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES
    CASDAGLI, M
    PHYSICA D, 1989, 35 (03): : 335 - 356
  • [33] A Collaborative Approach to Time-Series Prediction
    Scarpiniti, Michele
    Comminiello, Danilo
    Parisi, Raffaele
    Uncini, Aurelio
    NEURAL NETS WIRN11, 2011, 234 : 178 - 185
  • [34] RECURSIVE PREDICTION OF CHAOTIC TIME-SERIES
    STARK, J
    JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (02) : 197 - 223
  • [35] Adaptive modularity and time-series prediction
    Trebar, M
    Dobnikar, A
    ARTIFICIAL NEURAL NETS AND GENETIC ALGORITHMS, 1999, : 166 - 171
  • [36] An Empirical Evaluation of Time-Series Feature Sets
    Henderson, Trent
    Fulcher, Ben D.
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 1032 - 1038
  • [37] Embedded Temporal Feature Selection for Time Series Forecasting Using Deep Learning
    Jimenez-Navarro, M. J.
    Martinez-Ballesteros, M.
    Martinez-Alvarez, F.
    Asencio-Cortes, G.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT II, 2023, 14135 : 15 - 26
  • [38] EIGENVECTOR ANALYSIS FOR PREDICTION OF TIME-SERIES
    BRIER, GW
    MELTESEN, GT
    JOURNAL OF APPLIED METEOROLOGY, 1976, 15 (12): : 1307 - 1312
  • [39] Temporal Attention Gate Network with Temporal Decomposition for Improved Prediction Accuracy of Univariate Time-Series Data
    Sim, Sunghyun
    Kim, Dohee
    Jeong, Seok Chan
    2023 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION, ICAIIC, 2023, : 122 - 127
  • [40] On Graph Time-Series Representations for Temporal Networks
    Rossi, Ryan A.
    Ahmed, Nesreen K.
    Park, Namyong
    COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, : 14 - 18