Earth fissure hazard prediction using machine learning models

被引:84
|
作者
Choubin, Bahram [1 ]
Mosavi, Amir [2 ,3 ]
Alamdarloo, Esmail Heydari [4 ]
Hosseini, Farzaneh Sajedi [4 ]
Shamshirband, Shahaboddin [5 ,6 ]
Dashtekian, Kazem [7 ]
Ghamisi, Pedram [8 ]
机构
[1] AREEO, Soil Conservat & Watershed Management Res Dept, West Azarbaijan Agr & Nat Resources Res & Educ Ct, Orumiyeh, Iran
[2] Oxford Brookes Univ, Sch Built Environm, Oxford OX3 0BP, England
[3] Obuda Univ, Kalman Kando Fac Elect Engn, Budapest, Hungary
[4] Univ Tehran, Fac Nat Resources, Dept Reclamat Arid & Mt Reg, Karaj, Iran
[5] Ton Duc Thang Univ, Dept Management Sci & Technol Dev, Ho Chi Minh City, Vietnam
[6] Ton Duc Thang Univ, Fac Informat Technol, Ho Chi Minh City, Vietnam
[7] AREEO, Yazd Agr & Nat Resources Res Ctr, Yazd, Iran
[8] Helmholtz Zentrum Dresden Rossendorf, Helmholtz Inst Freiberg Resource Technol, Explorat Devis, Freiberg, Germany
关键词
Hazard prediction; Geohazard; Earth fissure; Machine learning; LAND SUBSIDENCE; GROUND FISSURES; REGRESSION TREES; RISK-ASSESSMENT; NORTH CHINA; CLASSIFICATION; AREA; WATER; SUSCEPTIBILITY; MANAGEMENT;
D O I
10.1016/j.envres.2019.108770
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Earth fissures are the cracks on the surface of the earth mainly formed in the arid and the semi-arid basins. The excessive withdrawal of groundwater, as well as the other underground natural resources, has been introduced as the significant causing of land subsidence and potentially, the earth fissuring. Fissuring is rapidly turning into the nations' major disasters which are responsible for significant economic, social, and environmental damages with devastating consequences. Modeling the earth fissure hazard is particularly important for identifying the vulnerable groundwater areas for the informed water management, and effectively enforce the groundwater recharge policies toward the sustainable conservation plans to preserve existing groundwater resources. Modeling the formation of earth fissures and ultimately prediction of the hazardous areas has been greatly challenged due to the complexity, and the multidisciplinary involved to predict the earth fissures. This paper aims at proposing novel machine learning models for prediction of earth fissuring hazards. The Simulated annealing feature selection (SAFS) method was applied to identify key features, and the generalized linear model (GLM), multivariate adaptive regression splines (MARS), classification and regression tree (CART), random forest (RF), and support vector machine (SVM) have been used for the first time to build the prediction models. Results indicated that all the models had good accuracy ( > 86%) and precision ( > 81%) in the prediction of the earth fissure hazard. The GLM model (as a linear model) had the lowest performance, while the RF model was the best model in the modeling process. Sensitivity analysis indicated that the hazardous class in the study area was mainly related to low elevations with characteristics of high groundwater withdrawal, drop in groundwater level, high well density, high road density, low precipitation, and Quaternary sediments distribution.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Susceptibility assessment of earth fissure related to groundwater extraction using machine learning methods combined with weights of evidence
    Aihua Wei
    Yuanyao Chen
    Haijun Zhao
    Zhao Liu
    Likui Yang
    Liangdong Yan
    Hui Li
    Natural Hazards, 2023, 119 : 2089 - 2111
  • [42] Unboxing machine learning models for concrete strength prediction using XAI
    Elhishi, Sara
    Elashry, Asmaa Mohammed
    El-Metwally, Sara
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [43] Development of childhood asthma prediction models using machine learning approaches
    Kothalawala, Dilini M.
    Murray, Clare S.
    Simpson, Angela
    Custovic, Adnan
    Tapper, William J.
    Arshad, S. Hasan
    Holloway, John W.
    Rezwan, Faisal, I
    CLINICAL AND TRANSLATIONAL ALLERGY, 2021, 11 (09)
  • [44] Prediction of Graduate Admission using Multiple Supervised Machine Learning Models
    Bitar, Zain
    Al-Mousa, Amjed
    IEEE SOUTHEASTCON 2020, 2020,
  • [45] A new algorithm for time series prediction using machine learning models
    Jahnavi, Yeturu
    Elango, Poongothai
    Raja, S. P.
    Parra Fuente, Javier
    Verdu, Elena
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (05) : 1449 - 1460
  • [46] Prediction of methane emission from landfills using machine learning models
    Mehrdad, Seyed Mostafa
    Abbasi, Maryam
    Yeganeh, Bijan
    Kamalan, Hamidreza
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2021, 40 (04)
  • [47] USING MACHINE LEARNING TO DEVELOP MODELS FOR THE PREDICTION OF UPPER GASTROINTESTINAL CANCERS
    Ho, Kai Man Alexander
    Rosenfeld, Avi
    Hogan, Aine
    McBain, Hazel
    Duku, Margaret
    Wolfson, Paul
    Wilson, Ashley
    Lovat, Laurence
    GUT, 2022, 71 : A3 - A3
  • [48] Gold and Silver Price Prediction using Hybrid Machine Learning Models
    Goel, Sakshi
    Saxena, Merry
    Sarangi, Pradeepta Kumar
    Rani, Lekha
    PDGC 2022 - 2022 7th International Conference on Parallel, Distributed and Grid Computing, 2022, : 390 - 395
  • [49] Analysis of breast cancer prediction and visualisation using machine learning models
    Magesh G.
    Swarnalatha P.
    International Journal of Cloud Computing, 2022, 11 (01) : 43 - 60
  • [50] Protein structure prediction (RMSD ≤ 5 Å) using machine learning models
    Pathak, Yadunath
    Rana, Prashant Singh
    Singh, P. K.
    Saraswat, Mukesh
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 14 (01) : 71 - 85