Extremal problems on consecutive L(2,1)-labelling

被引:8
|
作者
Lu, Changhong [1 ]
Chen, Lei
Zhai, Mingqing
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[2] E China Normal Univ, Inst Theoret Comp, Shanghai 200062, Peoples R China
[3] Chuzhou Univ, Dept Math & Comp Sci, Chuzhou 239012, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
channel assignment problems; distance-two labelling; Hamiltonian graphs; L(2,1)-labelling; no-hole coloring;
D O I
10.1016/j.dam.2006.12.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a given graph G of order n, a k-L(2, 1)-labelling is defined as a function f: V(G) -> {0, 1, 2,..., k} such that vertical bar f (u)-f (v)vertical bar >= 2 when d(G) (u, v) = 1 and vertical bar f (u) - f (v)vertical bar >= 1 when d(G) (u, v) = 2. The L(2, 1)-labelling number of G, denoted by lambda(G), is the smallest number k such that G has a k-L(2, I)-labelling. The consecutive L(2, 1)-labelling is a variation of L(2, 1)-labelling under the condition that the labelling f is an onto function. The consecutive L(2, 1)-labelling number of G is denoted by (lambda) over bar (G). Obviously lambda(G) <= (lambda) over bar (G) <= vertical bar V(G)vertical bar - 1 if G admits a consecutive L(2, 1)-labelling. In this paper, we investigate the graphs with (lambda) over bar (G)= vertical bar V(G)vertical bar - 1 and the graphs with (lambda) over bar (G) = lambda(G), in terms of their sizes, diameters and the number of components. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1302 / 1313
页数:12
相关论文
共 50 条
  • [1] The L(2,1)-labelling of trees
    Wang, WF
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (03) : 598 - 603
  • [2] L(2,1)-labelling of Graphs
    Havet, Frederic
    Reed, Bruce
    Sereni, Jean-Sebastien
    PROCEEDINGS OF THE NINETEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2008, : 621 - +
  • [3] L(2,1)-labelling of generalized prisms
    Chuda, Karina
    Skoviera, Martin
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (06) : 755 - 763
  • [4] A Note on L(2,1)-labelling of Trees
    Zhai, Ming-qing
    Lu, Chang-hong
    Shu, Jin-long
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2012, 28 (02): : 395 - 400
  • [5] A Note on L(2,1)-labelling of Trees
    Ming-qing ZHAI 1
    Acta Mathematicae Applicatae Sinica, 2012, (02) : 395 - 400
  • [6] On the L(2,1)-labelling of block graphs
    Bonomo, Flavia
    Cerioli, Marcia R.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (03) : 468 - 475
  • [7] A Note on L(2,1)-labelling of Trees
    Mingqing ZHAI Changhong LU Jinlong SHU School of Mathematical ScienceNanjing Normal UniversityJiangsuNanjing China Department of MathematicsChuzhou UniversityChuzhou China Department of MathematicsEast China Normal UniversityShanghai China
    Acta Mathematicae Applicatae Sinica(English Series), 2012, 28 (02) : 395 - 400
  • [8] THE L(2,1)-LABELLING OF Z*(N)
    An, Ping
    Jin, Yinglie
    Kanemitsu, Mitsuo
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2009, 14 (01): : 13 - 26
  • [9] A RESTRICTED L(2,1)-LABELLING PROBLEM ON INTERVAL GRAPHS
    Patra, N.
    Amanathulla, S. K.
    Pal, M.
    Mondal, S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (02): : 635 - 648
  • [10] A note on the L(2,1)-labelling problem of G(k, m)
    Ye, Qingjie
    DISCRETE APPLIED MATHEMATICS, 2022, 322 : 273 - 275