Mammalian Mitochondrial Complex I: Biogenesis, Regulation, and Reactive Oxygen Species Generation

被引:325
|
作者
Koopman, Werner J. H. [1 ,2 ]
Nijtmans, Leo G. J. [3 ]
Dieteren, Cindy E. J. [1 ,3 ]
Roestenberg, Peggy [1 ,3 ]
Valsecchi, Federica [1 ,3 ]
Smeitink, Jan A. M. [3 ]
Willems, Peter H. G. M. [1 ,2 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Nijmegen Ctr Mol Life Sci, Dept Biochem, 286 Biochem,POB 9101, NL-6500 HB Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Med Ctr, Nijmegen Ctr Mol Life Sci, Microscop Imaging Ctr, NL-6500 HB Nijmegen, Netherlands
[3] Radboud Univ Nijmegen, Med Ctr, Nijmegen Ctr Mitochondrial Disorders, Dept Pediat, NL-6500 HB Nijmegen, Netherlands
关键词
NADH-UBIQUINONE OXIDOREDUCTASE; ELECTRON-TRANSPORT-CHAIN; OXIDATIVELY DAMAGED PROTEINS; BOVINE HEART-MITOCHONDRIA; RESPIRATORY-CHAIN; SUPEROXIDE-PRODUCTION; ENDOPLASMIC-RETICULUM; HYDROGEN-PEROXIDE; CELL-DEATH; ESCHERICHIA-COLI;
D O I
10.1089/ars.2009.2743
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Virtually every mammalian cell contains mitochondria. These double-membrane organelles continuously change shape and position and contain the complete metabolic machinery for the oxidative conversion of pyruvate, fatty acids, and amino acids into ATP. Mitochondria are crucially involved in cellular Ca2+ and redox homeostasis and apoptosis induction. Maintenance of mitochondrial function and integrity requires an inside-negative potential difference across the mitochondrial inner membrane. This potential is sustained by the electron-transport chain (ETC). NADH: ubiquinone oxidoreductase or complex I (CI), the first and largest protein complex of the ETC, couples the oxidation of NADH to the reduction of ubiquinone. During this process, electrons can escape from CI and react with ambient oxygen to produce superoxide and derived reactive oxygen species (ROS). Depending on the balance between their production and removal by antioxidant systems, ROS may function as signaling molecules or induce damage to a variety of biomolecules or both. The latter ultimately leads to a loss of mitochondrial and cellular function and integrity. In this review, we discuss (a) the role of CI in mitochondrial functioning; (b) the composition, structure, and biogenesis of CI; (c) regulation of CI function; (d) the role of CI in ROS generation; and (e) adaptive responses to CI deficiency. Antioxid. Redox Signal. 12, 1431-1470.
引用
收藏
页码:1431 / 1470
页数:40
相关论文
共 50 条
  • [31] Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I
    Zhang, Bo
    Chu, Wei
    Wei, Peng
    Liu, Ying
    Wei, Taotao
    FREE RADICAL BIOLOGY AND MEDICINE, 2015, 89 : 486 - 497
  • [32] Computational Modeling Analysis of Generation of Reactive Oxygen Species by Mitochondrial Assembled and Disintegrated Complex II
    Markevich, Nikolay, I
    Markevich, Lubov N.
    Hoek, Jan B.
    FRONTIERS IN PHYSIOLOGY, 2020, 11
  • [33] Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I
    Hirst, Judy
    Roessler, Maxie M.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2016, 1857 (07): : 872 - 883
  • [34] Generation of reactive oxygen species by the mitochondrial electron transport chain
    Liu, YB
    MOLECULAR BIOLOGY OF THE CELL, 2001, 12 : 384A - 384A
  • [35] Role of reactive oxygen species in the mitochondrial regulation of cell death
    Orrenius, Sten
    FREE RADICAL RESEARCH, 2009, 43 : 27 - 27
  • [36] The mitochondrial complex I inhibitor rotenone induces apoptosis through stimulating mitochondrial reactive oxygen species production
    Li, NY
    Ragheb, K
    Lawler, G
    Robinson, P
    CYTOMETRY, 2002, : 76 - 76
  • [37] Generation of reactive oxygen species by the mitochondrial electron transport chain
    Liu, YB
    Fiskum, G
    Schubert, D
    JOURNAL OF NEUROCHEMISTRY, 2002, 80 (05) : 780 - 787
  • [38] Mitochondrial reactive oxygen species generation in goldfish Carassius auratus
    Andrade, R., Jr.
    Cardoso, L. A.
    Hermes-Lima, M.
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2007, 148 : S63 - S63
  • [39] Quantification of mitochondrial generation of reactive oxygen species in brain tissue
    Kudin, A. P.
    Debska-Vielhaber, G.
    Kunz, W. S.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2006, : 424 - 425
  • [40] Substrate-dependence of mitochondrial reactive oxygen species generation
    Adam-Vizi, Vera
    Komary, Zsofia
    Tretter, Laszlo
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2010, 1797 : 55 - 55