NON-RIGID OBJECT TRACKING BY ADAPTIVE DATA-DRIVEN KERNEL

被引:0
|
作者
Sun, Xin [1 ]
Yao, Hongxun [1 ]
Zhang, Shengping [1 ]
Sun, Mingui [2 ]
机构
[1] Harbin Inst Technol, Harbin, Peoples R China
[2] Univ Pittsburgh, Pittsburgh, PA 15260 USA
关键词
Object tracking; adaptive kernel; mean shift; active contour;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
We derive an adaptive data-driven kernel in this paper to simultaneously address the kernel scale/orientation selection problem as well as the constant kernel shape in deformable object tracking applications. Level set technique is novelly introduced into the mean shift sample space to implement kernel evolution and update. Since the active contour model is designed to drive the kernel constantly to the direction that maximizes target likelihood, the kernel can adapt to target shape variation simultaneously with the mean shift iterations. Thus, it can give a better estimation bias to produce accurate shift of the mean and successfully avoid performance loss stemmed from pollution of the non-object regions hiding inside the kernel. Experimental results on a number of challenging sequences validate the effectiveness of the technique.
引用
收藏
页码:2958 / 2962
页数:5
相关论文
共 50 条
  • [41] Kernel Non-Rigid Structure from Motion
    Gotardo, Paulo F. U.
    Martinez, Aleix M.
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 802 - 809
  • [42] A Kernel-Based Method for Non-Rigid Tumor Tracking in KV Image Sequence
    Zhang, X.
    Homma, N.
    Ichiji, K.
    Takai, Y.
    Narita, Y.
    Abe, M.
    Sugita, N.
    Yoshizawa, M.
    MEDICAL PHYSICS, 2013, 40 (06)
  • [43] A robust framework for tracking simultaneously rigid and non-rigid face using synthesized data
    Tran, Ngoc-Trung
    Ababsa, Fakhreddine
    Charbit, Maurice
    PATTERN RECOGNITION LETTERS, 2015, 65 : 75 - 80
  • [44] Skeleton Driven Non-rigid Motion Tracking and 3D Reconstruction
    Elanattil, Shafeeq
    Moghadam, Peyman
    Denman, Simon
    Sridharan, Sridha
    Fookes, Clinton
    2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2018, : 259 - 266
  • [45] Active Skeleton for Non-rigid Object Detection
    Bai, Xiang
    Wang, Xinggang
    Latecki, Longin Jan
    Liu, Wenyu
    Tu, Zhuowen
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 575 - 582
  • [46] An efficient algorithm for non-rigid object registration
    Makovetskii, A.
    Voronin, S.
    Kober, V
    Voronin, A.
    COMPUTER OPTICS, 2020, 44 (01) : 67 - 73
  • [47] Non-Rigid Object Contour Tracking via a Novel Supervised Level Set Model
    Sun, Xin
    Yao, Hongxun
    Zhang, Shengping
    Li, Dong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) : 3386 - 3399
  • [48] Non-Rigid Object Tracking Using Level Sets with Multiple Feature Spaces Association
    Zhang, Yan
    Sun, Xin
    Yao, Hongxun
    Zhang, Shengping
    2012 IEEE FIFTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2012, : 133 - 136
  • [49] Hierarchical non-rigid density object analysis
    Morita, S
    SCALE-SPACE THEORIES IN COMPUTER VISION, 1999, 1682 : 471 - 476
  • [50] TRACKING NON-RIGID STRUCTURES IN COMPUTER SIMULATIONS
    Gezahegne, Abel
    Kainath, Chandrika
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 1548 - 1551