Polysaccharide oxidation by lytic polysaccharide monooxygenase is enhanced by engineered cellobiose dehydrogenase

被引:52
|
作者
Kracher, Daniel [1 ,2 ]
Forsberg, Zarah [3 ]
Bissaro, Bastien [3 ]
Gangl, Sonja [1 ]
Preims, Marita [1 ]
Sygmund, Christoph [1 ]
Eijsink, Vincent G. H. [3 ]
Ludwig, Roland [1 ]
机构
[1] BOKU Univ Nat Resources & Life Sci, Dept Food Sci & Technol, A-1190 Vienna, Austria
[2] Univ Manchester, Manchester Inst Biotechnol, Manchester, Lancs, England
[3] Norwegian Univ Life Sci NMBU, Fac Chem Biotechnol & Food Sci, N-1432 As, Norway
基金
奥地利科学基金会;
关键词
cellobiose dehydrogenase; cellulose degradation; copper monooxygenase; hydrogen peroxide; lytic polysaccharide monooxygenase; OXYGEN ACTIVATION; H2O2-DRIVEN DEGRADATION; ELECTRON-TRANSFER; CELLULOSE; ENZYMES; CHITIN; CLEAVAGE; OXIDASES; INSIGHTS; BINDING;
D O I
10.1111/febs.15067
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The catalytic function of lytic polysaccharide monooxygenases (LPMOs) to cleave and decrystallize recalcitrant polysaccharides put these enzymes in the spotlight of fundamental and applied research. Here we demonstrate that the demand of LPMO for an electron donor and an oxygen species as cosubstrate can be fulfilled by a single auxiliary enzyme: an engineered fungal cellobiose dehydrogenase (CDH) with increased oxidase activity. The engineered CDH was about 30 times more efficient in driving the LPMO reaction due to its 27 time increased production of H2O2 acting as a cosubstrate for LPMO. Transient kinetic measurements confirmed that intra- and intermolecular electron transfer rates of the engineered CDH were similar to the wild-type CDH, meaning that the mutations had not compromised CDH's role as an electron donor. These results support the notion of H2O2-driven LPMO activity and shed new light on the role of CDH in activating LPMOs. Importantly, the results also demonstrate that the use of the engineered CDH results in fast and steady LPMO reactions with CDH-generated H2O2 as a cosubstrate, which may provide new opportunities to employ LPMOs in biomass hydrolysis to generate fuels and chemicals.
引用
收藏
页码:897 / 908
页数:12
相关论文
共 50 条
  • [21] Inhibition of lytic polysaccharide monooxygenase by natural plant extracts
    Tokin, Radina
    Frandsen, Kristian E. H.
    Ipsen, Johan Orskov
    Lo Leggio, Leila
    Poojary, Mahesha M.
    Berrin, Jean-Guy
    Grisel, Sacha
    Brander, Soren
    Jensen, Poul Erik
    Johansen, Katja Salomon
    NEW PHYTOLOGIST, 2021, 232 (03) : 1337 - 1349
  • [22] Photobiocatalysis by a Lytic Polysaccharide Monooxygenase Using Intermittent Illumination
    Blossom, Benedikt M.
    Russo, David A.
    Singh, Raushan K.
    Van Oort, Bart
    Keller, Malene B.
    Simonsen, Tor, I
    Perzon, Alixander
    Gamon, Luke F.
    Davies, Michael J.
    Cannella, David
    Croce, Roberta
    Jensen, Poul Erik
    Bjerrum, Morten J.
    Felby, Claus
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (25) : 9301 - 9310
  • [23] Structural determinants of bacterial lytic polysaccharide monooxygenase functionality
    Forsberg, Zarah
    Bissaro, Bastien
    Gullesen, Jonathan
    Dalhus, Bjorn
    Vaaje-Kolstad, Gustav
    Eijsink, Vincent G. H.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (04) : 1397 - 1412
  • [24] Synthesis of glycoconjugates utilizing the regioselectivity of a lytic polysaccharide monooxygenase
    Westereng, Bjorge
    Kracun, Stjepan K.
    Leivers, Shaun
    Arntzen, Magnus O.
    Aachmann, Finn L.
    Eijsink, Vincent G. H.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [25] Improving the Enzymatic Activity and Stability of a Lytic Polysaccharide Monooxygenase
    Berhe, Miesho Hadush
    Song, Xiangfei
    Yao, Lishan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (10)
  • [26] A fast and sensitive activity assay for lytic polysaccharide monooxygenase
    Erik Breslmayr
    Marija Hanžek
    Aoife Hanrahan
    Christian Leitner
    Roman Kittl
    Božidar Šantek
    Chris Oostenbrink
    Roland Ludwig
    Biotechnology for Biofuels, 11
  • [27] Impact of Copper Saturation on Lytic Polysaccharide Monooxygenase Performance
    Ostby, Heidi
    Tuveng, Tina R.
    Stepnov, Anton A.
    Vaaje-Kolstad, Gustav
    Forsberg, Zarah
    Eijsink, Vincent G. H.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (43) : 15566 - 15576
  • [28] Activation of enzymatic chitin degradation by a lytic polysaccharide monooxygenase
    Hamre, Anne Grethe
    Eide, Kristine B.
    Wold, Hanne H.
    Sorlie, Morten
    CARBOHYDRATE RESEARCH, 2015, 407 : 166 - 169
  • [29] How a Lytic Polysaccharide Monooxygenase Binds Crystalline Chitin
    Bissaro, Bastien
    Isaksen, Ingvild
    Vaaje-Kolstad, Gustav
    Eijsink, Vincent G. H.
    Rohr, Asmund K.
    BIOCHEMISTRY, 2018, 57 (12) : 1893 - 1906
  • [30] Synthesis of glycoconjugates utilizing the regioselectivity of a lytic polysaccharide monooxygenase
    Bjørge Westereng
    Stjepan K. Kračun
    Shaun Leivers
    Magnus Ø. Arntzen
    Finn L. Aachmann
    Vincent G. H. Eijsink
    Scientific Reports, 10