Developing a Bi-objective Mathematical Model to Design the Fish Closed-loop Supply Chain

被引:41
|
作者
Fasihi, M. [1 ]
Tavakkoli-Moghaddam, R. [2 ]
Najafi, S. E. [1 ]
Hahiaghaei-Keshteli, M. [3 ]
机构
[1] Islamic Azad Univ, Dept Ind Engn, Sci & Res Branch, Tehran, Iran
[2] Univ Tehran, Coll Engn, Sch Ind Engn, Tehran, Iran
[3] Tecnol Monterrey, Escuela Ingn & Ciencias, Puebla, Mexico
来源
INTERNATIONAL JOURNAL OF ENGINEERING | 2021年 / 34卷 / 05期
关键词
Bi-objective Mathematical Model; Closed-loop Supply Chain; Fish Reverse Logistics; INTEGRATED APPROACH; OPTIMIZATION; PRODUCTS; FLOWSHOP;
D O I
10.5829/ije.2021.34.05b.19
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, many industries in developed countries have integrated the important process of reverse logistics into their supply chain for different reasons, including growing environmental concerns. Given fish as perishable food, re-employing unused products and waste in each step of the chain constitute a major concern for the decision-makers. The present study is conducted to maximize responsiveness to customer demand and minimize the cost of the fish closed-loop supply chain (CLSC) by proposing a novel mathematical model. To solve this model, the epsilon-constraint method and Lp-metric were employed. Then, the solution methods were compared with each other based on the performance metrics and a statistical hypothesis. The superior method is ultimately determined using the TOPSIS method. The model application is tested on a case study of the trout CLSC in the north of Iran by performing a sensitivity analysis of demand. This analysis showed the promising results of using the proposed solution method and model.
引用
收藏
页码:1257 / 1268
页数:12
相关论文
共 50 条