Hierarchical porous graphitic carbon for high-performance supercapacitors at high temperature

被引:12
|
作者
Chen, Chong [1 ]
Yu, Dengfeng [2 ]
Zhao, Gongyuan [1 ]
Sun, Lei [1 ]
Sun, Yinyong [1 ]
Leng, Kunyue [1 ]
Yu, Miao [1 ]
Sun, Ye [2 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Condensed Matter Sci & Technol Inst, Harbin 150001, Peoples R China
来源
RSC ADVANCES | 2017年 / 7卷 / 55期
基金
中国国家自然科学基金;
关键词
THERMAL-DECOMPOSITION; ELECTRODE MATERIAL; MESOPOROUS CARBON; ENERGY-STORAGE; IONIC LIQUIDS; GRAPHENE; NANOSTRUCTURES; CHALLENGES; DESIGN;
D O I
10.1039/c7ra06234f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing supercapacitors with high energy density without sacrificing the power density and cycle life has attracted enormous attention. Hierarchical porous graphitic carbons (HPGCs) have been demonstrated to be promising candidates. However, the complicated, energy-intensive synthesis and the difficult post-treatment for the reported synthetic HPGCs have confined the potential for large-scale production and practical applications. In this work, HPGCs have been fabricated by a one-step metallothermic reaction, using magnesium, urea, and zinc acetate dehydrate, showing a distinct hierarchical porous structure with graphitic domains. The assembled supercapacitors exhibit excellent performance at 150 degrees C, resulting in an energy density of 16 W h kg(-1) (with a power density of 500 W kg(-1)). Moreover, the HPGC shows a high cycling stability (5% loss after 30 000 cycles), and ultrahigh capacitance retention, i.e. 70% at 5 A g(-1) and 62% at 10 A g(-1) using EMIMBF4 electrolyte, and 70% at 400 mV s(-1) and 77% at 20 A g(-1) using 6 mol L-1 KOH electrolyte. Most importantly, the universality of this new metallothermic method of HPGC fabrication has been demonstrated by replacing urea with other chemical substances. Such a facile synthesis may have provided a fresh route to produce HPGCs with excellent supercapacitive performance.
引用
收藏
页码:34488 / 34496
页数:9
相关论文
共 50 条
  • [11] Hierarchical, porous CuS microspheres integrated with carbon nanotubes for high-performance supercapacitors
    Yang Lu
    Xianming Liu
    Weixiao Wang
    Jinbing Cheng
    Hailong Yan
    Chengchun Tang
    Jang-Kyo Kim
    Yongsong Luo
    Scientific Reports, 5
  • [12] Hierarchical Porous Carbon Based on Waste Quinoa Straw for High-Performance Supercapacitors
    Ma, Tianyi
    Xu, Shiai
    Zhu, Mengshi
    ACS OMEGA, 2024, 9 (12): : 13592 - 13602
  • [13] Alginate-based hierarchical porous carbon aerogel for high-performance supercapacitors
    Wang, Bingbing
    Li, Daohao
    Tang, Maowen
    Ma, Haibing
    Gui, Yougang
    Tian, Xing
    Quan, Fengyu
    Song, Xiquan
    Xia, Yanzhi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 749 : 517 - 522
  • [14] Synthesis of three-dimensional hierarchical porous carbon for high-performance supercapacitors
    Yang, Wang
    Yang, Wu
    Kong, Lina
    Song, Ailing
    Qin, Xiujuan
    IONICS, 2018, 24 (10) : 3133 - 3141
  • [15] Cellulose-derived hierarchical porous carbon for high-performance flexible supercapacitors
    Wang, Chao
    Wang, Xianfen
    Lu, Hao
    Li, Hongliang
    Zhao, X. S.
    CARBON, 2018, 140 : 139 - 147
  • [16] Alginate-based hierarchical porous carbon aerogel for high-performance supercapacitors
    Xia, Yanzhi (xiayz@qdu.edu.cn), 1600, Elsevier Ltd (749):
  • [17] Hierarchical, porous CuS microspheres integrated with carbon nanotubes for high-performance supercapacitors
    Lu, Yang
    Liu, Xianming
    Wang, Weixiao
    Cheng, Jinbing
    Yan, Hailong
    Tang, Chengchun
    Kim, Jang-Kyo
    Luo, Yongsong
    SCIENTIFIC REPORTS, 2015, 5
  • [18] Facile fabrication of carbon materials with hierarchical porous structure for high-performance supercapacitors
    Li, Pan
    Feng, Cui-Ning
    Li, Hong-Ping
    Zhang, Xiao-Li
    Zheng, Xiu-Cheng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 851
  • [19] Synthesis of three-dimensional hierarchical porous carbon for high-performance supercapacitors
    Wang Yang
    Wu Yang
    Lina Kong
    Ailing Song
    Xiujuan Qin
    Ionics, 2018, 24 : 3133 - 3141
  • [20] Graphitization induced by KOH etching for the fabrication of hierarchical porous graphitic carbon sheets for high performance supercapacitors
    Qi, Fulai
    Xia, Zhangxun
    Sun, Ruili
    Sun, Xuejing
    Xu, Xinlong
    Wei, Wei
    Wang, Suli
    Sun, Gongquan
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (29) : 14170 - 14177