Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning

被引:233
|
作者
Dais, Dimitris [1 ,2 ]
Bal, Ihsan Engin [1 ]
Smyrou, Eleni [1 ]
Sarhosis, Vasilis [2 ]
机构
[1] Hanze Univ Appl Sci, Res Ctr Built Environm NoorderRuimte, Zernikepl 11, NL-9701 DA Groningen, Netherlands
[2] Univ Leeds, Sch Civil Engn, Woodhouse, Leeds LS2 9JT, W Yorkshire, England
关键词
CNN; Masonry; Crack detection; Segmentation; Classification; Transfer learning; Deep learning; DAMAGE DETECTION; ARCHITECTURE; INSPECTION;
D O I
10.1016/j.autcon.2021.103606
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Masonry structures represent the highest proportion of building stock worldwide. Currently, the structural condition of such structures is predominantly manually inspected which is a laborious, costly and subjective process. With developments in computer vision, there is an opportunity to use digital images to automate the visual inspection process. The aim of this study is to examine deep learning techniques for crack detection on images from masonry walls. A dataset with photos from masonry structures is produced containing complex backgrounds and various crack types and sizes. Different deep learning networks are considered and by leveraging the effect of transfer learning crack detection on masonry surfaces is performed on patch level with 95.3% accuracy and on pixel level with 79.6% F1 score. This is the first implementation of deep learning for pixel-level crack segmentation on masonry surfaces. Codes, data and networks relevant to the herein study are available in: github.com/dimitrisdais/crack_detection_CNN_masonry.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Automatic classification of pavement crack using deep convolutional neural network
    Li, Baoxian
    Wang, Kelvin C. P.
    Zhang, Allen
    Yang, Enhui
    Wang, Guolong
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2020, 21 (04) : 457 - 463
  • [22] Fully Convolutional Networks for Automatic Pavement Crack Segmentation
    Escalona, Uriel
    Arce, Fernando
    Zamora, Erik
    Sossa, Humberto
    COMPUTACION Y SISTEMAS, 2019, 23 (02): : 451 - 460
  • [23] Classification and Segmentation of Satellite Orthoimagery Using Convolutional Neural Networks
    Langkvist, Martin
    Kiselev, Andrey
    Alirezaie, Marjan
    Loutfi, Amy
    REMOTE SENSING, 2016, 8 (04)
  • [24] Automatic defects detection in CFRP thermograms, using convolutional neural networks and transfer learning
    Saeed, Numan
    King, Nelson
    Said, Zafar
    Omar, Mohammed A.
    INFRARED PHYSICS & TECHNOLOGY, 2019, 102
  • [25] Automatic detection and classification of leukocytes using convolutional neural networks
    Jianwei Zhao
    Minshu Zhang
    Zhenghua Zhou
    Jianjun Chu
    Feilong Cao
    Medical & Biological Engineering & Computing, 2017, 55 : 1287 - 1301
  • [26] Automatic detection and classification of leukocytes using convolutional neural networks
    Zhao, Jianwei
    Zhang, Minshu
    Zhou, Zhenghua
    Chu, Jianjun
    Cao, Feilong
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2017, 55 (08) : 1287 - 1301
  • [27] Automatic Modulation Classification: Convolutional Deep Learning Neural Networks Approaches
    Hussein, Hany S.
    Essai Ali, Mohamed Hassan
    Ismeil, Mohammed
    Shaaban, Mohamed N.
    Mohamed, Mona Lotfy
    Atallah, Hany A.
    IEEE ACCESS, 2023, 11 : 98695 - 98705
  • [28] Detection and Segmentation of Manufacturing Defects with Convolutional Neural Networks and Transfer Learning
    Ferguson, Max
    Ak, Ronay
    Lee, Yung-Tsun Tina
    Law, Kincho H.
    SMART AND SUSTAINABLE MANUFACTURING SYSTEMS, 2018, 2 (01): : 137 - 164
  • [29] Automatic Airway Segmentation in Chest CT Using Convolutional Neural Networks
    Juarez, A. Garcia-Uceda
    Tiddens, H. A. W. M.
    de Bruijne, M.
    IMAGE ANALYSIS FOR MOVING ORGAN, BREAST, AND THORACIC IMAGES, 2018, 11040 : 238 - 250
  • [30] Automatic Foot Ulcer Segmentation Using an Ensemble of Convolutional Neural Networks
    Mahbod, Amirreza
    Schaefer, Gerald
    Ecker, Rupert
    Ellinger, Isabella
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4358 - 4364