Rate-Splitting Multiple Access: A New Frontier for the PHY Layer of 6G

被引:68
|
作者
Dizdar, Onur [1 ]
Mao, Yijie [1 ]
Han, Wei [2 ]
Clerckx, Bruno [1 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London, England
[2] Huawei Technol, Shanghai, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Rate-splitting; multi-antenna broadcast channel; multiple-access; MIMO; 5G; 6G; MISO BROADCAST CHANNEL; COMMUNICATION; TRANSMISSION; NETWORKS; SYSTEMS;
D O I
10.1109/VTC2020-Fall49728.2020.9348672
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to efficiently cope with the high throughput, reliability, heterogeneity of Quality-of-Service (QoS), and massive connectivity requirements of future 6G multi-antenna wireless networks, multiple access and multiuser communication system design need to depart from conventional interference management strategies, namely fully treat interference as noise (as commonly used in 4G/5G, MU-MIMO, CoMP, Massive MIMO, millimetre wave MIMO) and fully decode interference (as in Non-Orthogonal Multiple Access, NOMA). This paper is dedicated to the theory and applications of a more general and powerful transmission framework based on Rate-Splitting Multiple Access (RSMA) that splits messages into common and private parts and enables to partially decode interference and treat remaining part of the interference as noise. This enables RSMA to softly bridge and therefore reconcile the two extreme strategies of fully decode interference and treat interference as noise and provide room for spectral efficiency, energy efficiency and QoS enhancements, robustness to imperfect Channel State Information at the Transmitter (CSIT), and complexity reduction. This paper provides an overview of RSMA and its potential to address the requirements of 6G.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Precoding Optimization Assisted Secure Transmission for Rate-Splitting Multiple Access
    Li, Dongdong
    Yang, Zhutian
    Zhao, Nan
    Chen, Yunfei
    Wu, Zhilu
    Li, Yonghui
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 673 - 678
  • [32] STAR-IRS Assisted Rate Splitting Multiple Access with Perfect and Imperfect CSI for 6G Communication
    Krishnan, Aswini
    Sabapathy, Sundaresan
    Maruthu, Surendar
    IEEE LATIN AMERICA TRANSACTIONS, 2025, 23 (01) : 17 - 24
  • [33] Rate-Splitting Multiple Access: Fundamentals, Survey, and Future Research Trends
    Mao, Yijie
    Dizdar, Onur
    Clerckx, Bruno
    Schober, Robert
    Popovski, Petar
    Poor, H. Vincent
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2022, 24 (04): : 2073 - 2126
  • [34] Energy Efficiency of Rate-Splitting Multiple Access for Multibeam Satellite Communications
    Liu, Jinyuan
    Guan, Yong Liang
    Ge, Yao
    Yin, Longfei
    Clerckx, Bruno
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [35] Reduced Complexity Rate-Splitting Multiple Access Beamforming for Generalized Objectives
    Sadeghabadi, Elaheh
    Blostein, Steven D.
    IEEE ACCESS, 2024, 12 : 155958 - 155975
  • [36] Rate-Splitting Multiple Access and Its Interplay with Intelligent Reflecting Surfaces
    de Sena, Arthur S.
    Nardelli, Pedro H. J.
    da Costa, Daniel B.
    Popovski, Petar
    Papadias, Constantinos B.
    IEEE COMMUNICATIONS MAGAZINE, 2022, 60 (07) : 52 - 57
  • [37] Jamming-Based Covert Communication for Rate-Splitting Multiple Access
    Trung Thanh Nguyen
    Nguyen Cong Luong
    Feng, Shaohan
    Elbassioni, Khaled
    Niyato, Dusit
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (08) : 11074 - 11079
  • [38] Performance Analysis of Uplink Rate-Splitting Multiple Access With Hybrid ARQ
    Liu, Yuanwen
    Clerckx, Bruno
    Popovski, Petar
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 14201 - 14214
  • [40] Rate-Splitting Multiple Access Scheme Based on Frequency Diverse Array
    Liu, Penglu
    Dong, Xiaodai
    Li, Yong
    Cheng, Wei
    Zhang, Wenjie
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (12) : 2108 - 2112