A Self-Supported High-Entropy Metallic Glass with a Nanosponge Architecture for Efficient Hydrogen Evolution under Alkaline and Acidic Conditions

被引:173
|
作者
Jia, Zhe [1 ]
Nomoto, Keita [1 ,2 ,3 ]
Wang, Qing [4 ,5 ,6 ]
Kong, Charlie [7 ]
Sun, Ligang [8 ]
Zhang, Lai-Chang [9 ]
Liang, Shun-Xing [9 ]
Lu, Jian [5 ,6 ,10 ]
Kruzic, Jamie J. [1 ]
机构
[1] Univ New South Wales UNSW Sydney, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
[2] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia
[3] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[4] Shanghai Univ, Lab Microstruct, Inst Mat Sci, Shanghai 200072, Peoples R China
[5] City Univ Hong Kong, Hong Kong Branch, Natl Precious Met Mat Engn Res Ctr, Hong Kong, Peoples R China
[6] City Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
[7] Univ New South Wales UNSW Sydney, Electron Microscope Unit, Sydney, NSW 2052, Australia
[8] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Peoples R China
[9] Edith Cowan Univ, Sch Engn, 270 Joondalup Dr, Perth, WA 6027, Australia
[10] City Univ Hong Kong Shenzhen Res Inst, Greater Bay Joint Div, Ctr Adv Struct Mat, Shenyang Natl Lab Mat Sci, Shenzhen 518057, Peoples R China
基金
国家重点研发计划; 国家自然科学基金重大项目; 澳大利亚研究理事会;
关键词
chemical complexity; electrocatalysis; high-entropy metallic glass; lattice distortion; metallurgy; BIFUNCTIONAL ELECTROCATALYSTS; CATALYTIC-ACTIVITY; PH-UNIVERSAL; WATER; NICKEL; ALLOY; NANOPARTICLES; HYDROXIDE; SURFACE; PERFORMANCE;
D O I
10.1002/adfm.202101586
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing highly efficient and durable electrocatalysts for hydrogen evolution reaction (HER) under both alkaline and acidic media is crucial for the future development of a hydrogen economy. However, state-of-the-art high-performance electrocatalysts recently developed are based on carbon carriers mediated by binding noble elements and their complicated processing methods are a major impediment to commercialization. Here, inspired by the high-entropy alloy concept with its inherent multinary nature and using a glassy alloy design with its chemical homogeneity and tunability, we present a scalable strategy to alloy five equiatomic elements, PdPtCuNiP, into a high-entropy metallic glass (HEMG) for HER in both alkaline and acidic conditions. Surface dealloying of the HEMG creates a nanosponge-like architecture with nanopores and embedded nanocrystals that provides abundant active sites to achieve outstanding HER activity. The obtained overpotentials at a current density of 10 mA cm(-2) are 32 and 62 mV in 1.0 m KOH and 0.5 m H2SO4 solutions, respectively, outperforming most currently available electrocatalysts. Density functional theory reveals that a lattice distortion and the chemical complexity of the nanocrystals lead to a strong synergistic effect on the electronic structure that further stabilizes hydrogen proton adsorption/desorption. This HEMG strategy establishes a new paradigm for designing compositionally complex alloys for electrochemical reactions.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Self-supported Co-Ni-P ternary nanowire electrodes for highly efficient and stable electrocatalytic hydrogen evolution in acidic solution
    Li, Wei
    Xiong, Dehua
    Gao, Xuefei
    Song, Wei-Guo
    Xia, Fang
    Liu, Lifeng
    CATALYSIS TODAY, 2017, 287 : 122 - 129
  • [42] Stretchable high-entropy alloy nanoflowers enable enhanced alkaline hydrogen evolution catalysis
    Wei, Min
    Sun, Yuyan
    Ai, Fei
    Xi, Shibo
    Zhang, Junyu
    Wang, Jike
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2023, 334
  • [43] Graphene dot armored PtMo nanosponge as a highly efficient and stable electrocatalyst for hydrogen evolution reactions in both acidic and alkaline media
    Nguyen, Van-Toan
    Nguyen, Ngoc-Anh
    Ali, Yousuf
    Tran, Quoc Chinh
    Choi, Ho-Suk
    CARBON, 2019, 146 : 116 - 124
  • [44] Self-supported Ni/NiO heterostructures with a controlled reduction protocol for enhanced industrial alkaline hydrogen evolution
    Wang, Haiyang
    Chen, Cong
    Shen, Junxia
    Olu, Pierre-Yves
    Li, Longhui
    Dong, Wen
    Fan, Ronglei
    Shen, Mingrong
    CHEMICAL COMMUNICATIONS, 2024, 61 (02) : 278 - 281
  • [45] Quinary RuRhPdPtAu high-entropy alloy as an efficient electrocatalyst for the hydrogen evolution reaction
    Chen, Cheng
    Guo, Jiayin
    Liu, Jianhong
    Li, Weiwei
    Wei, Yongsheng
    Wang, Honghui
    Zhao, Xinsheng
    Wei, Lu
    CHEMICAL COMMUNICATIONS, 2023, 59 (86) : 12863 - 12866
  • [46] Self-supported system of MoO2@Ni2P heterostructures as an efficient electrocatalyst for hydrogen evolution reactions in alkaline media
    Zhang, Zhiqiang
    Lin, Xiaofeng
    Tang, Shuli
    Xie, Haijiao
    Huang, Qitong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 630 : 494 - 501
  • [47] A large scale self-supported WP-W2C nanoporous network for efficient hydrogen evolution reaction in alkaline media
    Huang, Jingwen
    Jian, Chuanyong
    Cai, Qian
    Hong, Wenting
    Liu, Wei
    Journal of Materials Chemistry A, 2022, 10 (20): : 10990 - 10997
  • [48] Self-Supported Ni(P, O)x•MoOx Nanowire Array on Nickel Foam as an Efficient and Durable Electrocatalyst for Alkaline Hydrogen Evolution
    Hua, Wei
    Liu, Huanyan
    Wang, Jian-Gan
    Wei, Bingqing
    NANOMATERIALS, 2017, 7 (12):
  • [49] A large scale self-supported WP-W2C nanoporous network for efficient hydrogen evolution reaction in alkaline media
    Huang, Jingwen
    Jian, Chuanyong
    Cai, Qian
    Hong, Wenting
    Liu, Wei
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (20) : 10990 - 10997
  • [50] Potentiostatic electrodeposition of self-supported Ni-S electrocatalyst supported on Ni foam for efficient hydrogen evolution
    Wu, Yihui
    Lian, Jiqiong
    Wang, Yuxin
    Sun, Jingjing
    He, Zhen
    Gu, Zhenjian
    MATERIALS & DESIGN, 2021, 198