Hyperbolic geometry and the moduli space of real binary sextics

被引:0
|
作者
Allcock, Daniel [1 ]
Carlson, Jaines A.
Toledo, Domingo
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[3] Clay Math Inst, Cambridge, MA 02138 USA
关键词
complex hyperbolic geometry; hyperbolic reflection groups; orbifolds; moduli spaces; ball quotients;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The moduli space of real 6-tuples in CP1 is modeled on a quotient of hyperbolic 3-space by a nonarithmetic lattice in Isom H-3. This is partly an expository note; the first part of it is an introduction to orbifolds and hyperbolic reflection groups.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [21] On the quadratic invariant of binary sextics
    Dunajski, Maciej
    Penrose, Roger
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2017, 162 (03) : 435 - 445
  • [22] Horospherical geometry in the hyperbolic space
    Izumiya, Shyuichi
    NONCOMMUTATIVITY AND SINGULARITIES: PROCEEDINGS OF FRENCH-JAPANESE SYMPOSIA HELD AT IHES IN 2006, 2009, 55 : 31 - 49
  • [23] Hyperbolic geometry of the olfactory space
    Zhou, Yuansheng
    Smith, Brian H.
    Sharpee, Tatyana O.
    SCIENCE ADVANCES, 2018, 4 (08):
  • [24] The moduli space of hyperbolic compact complex spaces
    Adel Khalfallah
    Mathematische Zeitschrift, 2007, 255 : 691 - 702
  • [25] Geometry of the logarithmic Hodge moduli space
    de Cataldo, Mark Andrea
    Herrero, Andres Fernandez
    Zhang, Siqing
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (01):
  • [26] THE GEOMETRY OF THE MODULI SPACE OF RIEMANN SURFACES
    WOLPERT, SA
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 11 (01) : 189 - 191
  • [27] The moduli space of Riemann surfaces is Kahler hyperbolic
    McMullen, CT
    ANNALS OF MATHEMATICS, 2000, 151 (01) : 327 - 357
  • [28] The moduli space of hyperbolic compact complex spaces
    Khalfallah, Adel
    MATHEMATISCHE ZEITSCHRIFT, 2007, 255 (04) : 691 - 702
  • [29] The global geometry of the moduli space of curves
    Farkas, Gavril
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 : 125 - 147
  • [30] ON THE GEOMETRY OF THE MODULI SPACE OF SPIN CURVES
    Ludwig, Katharina
    JOURNAL OF ALGEBRAIC GEOMETRY, 2010, 19 (01) : 133 - 171