Hypergraph Convolutional Network for Group Recommendation

被引:25
|
作者
Jia, Renqi [1 ,2 ]
Zhou, Xiaofei [1 ,2 ]
Dong, Linhua [1 ,2 ]
Pan, Shirui [3 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
[3] Monash Univ, Fac Informat Technol, Melbourne, Vic, Australia
关键词
Group Recommendation; Hypergraph Convolution; Graph Convolution; Representation Learning;
D O I
10.1109/ICDM51629.2021.00036
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Group activities have become an essential part of people's daily life, which stimulates the requirement for intensive research on the group recommendation task, i.e., recommending items to a group of users. Most existing works focus on aggregating users' interests within the group to learn group preference. These methods are faced with two problems. First, these methods only model the user preference inside a single group while ignoring the collaborative relations among users and items across different groups. Second, they assume that group preference is an aggregation of user interests, and factually a group may pursue some targets not derived from users' interests. Thus they are insufficient to model the general group preferences which are independent of existing user interests. To address the above issues, we propose a novel dual channel Hypergraph Convolutional network for group Recommendation (HCR), which consists of member-level preference network and group-level preference network. In the member-level preference network, in order to capture cross-group collaborative connections among users and items, we devise a member-level hypergraph convolutional network to learn group members' personal preferences. In the group-level preference network, the group's general preference is captured by a group-level graph convolutional network based on group similarity. We evaluate our model on two real-world datasets and the experimental results show that the proposed model significantly and consistently outperforms state-of-the-art group recommendation techniques.
引用
收藏
页码:260 / 269
页数:10
相关论文
共 50 条
  • [41] An Evolving Hypergraph Convolutional Network for the Diagnosis of Alzheimer's Disease
    Wang, Xinlei
    Xin, Junchang
    Wang, Zhongyang
    Li, Chuangang
    Wang, Zhiqiong
    DIAGNOSTICS, 2022, 12 (11)
  • [42] Hyperspectral Image Classification Based on Hypergraph and Convolutional Neural Network
    Liu Yuzhen
    Jiang Zhengquan
    Mai Fei
    Zhang Chunhua
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (11)
  • [43] Spatial-temporal hypergraph convolutional network for traffic forecasting
    Zhao Z.
    Shen G.
    Zhou J.
    Jin J.
    Kong X.
    PeerJ Computer Science, 2023, 9
  • [44] Hypergraph attentional convolutional neural network for salient object detection
    Ze-yu Liu
    Jian-wei Liu
    The Visual Computer, 2023, 39 : 2881 - 2907
  • [45] Hypergraph Convolutional Network with Hybrid Higher-Order Neighbors
    Huang, Jiahao
    Lei, Fangyuan
    Wang, Senhong
    Wang, Song
    Dai, Qingyun
    PATTERN RECOGNITION AND COMPUTER VISION, PT IV, 2021, 13022 : 103 - 114
  • [46] Attention Network for Group Recommendation
    Chen, Qingwei
    Yang, Juan
    PROCEEDINGS OF 2020 IEEE 11TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2020), 2020, : 150 - 153
  • [47] Hyperparameter Recommendation Integrated With Convolutional Neural Network
    Deng, Liping
    Chen, Wen-Sheng
    Pan, Binbin
    Xiao, Mingqing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [48] An improved recommendation based on graph convolutional network
    Yichen He
    Yijun Mao
    Xianfen Xie
    Wanrong Gu
    Journal of Intelligent Information Systems, 2022, 59 : 801 - 823
  • [49] A Novel Convolutional Neural Network for Statutes Recommendation
    Li, Chuanyi
    Ye, Jingjing
    Ge, Jidong
    Kong, Li
    Hu, Haiyang
    Luo, Bin
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 851 - 863
  • [50] Feature recommendation strategy for graph convolutional network
    Qin, Jisheng
    Zeng, Xiaoqin
    Wu, Shengli
    Zou, Yang
    CONNECTION SCIENCE, 2022, 34 (01) : 1697 - 1718