Today, at the threshold of the 21st century, rising apprehensions about the instability of oil prices, energy security, and adverse effects of fossil fuels on the environment, have made it imperative to search for alternative energy resources that are clean and sustainable. Among various biofuels, bioethanol is very promising. Bioethanol obtained from the fermentation of biomass is dilute and needs to undergo recovery and dehydration before its use as a fuel. This separation step is one of the energy-intensive steps in bioethanol production, which continues to motivate continual advances in bioethanol separation design. Hence, this review paper focuses on the recent advancements in the development of bioethanol recovery and dehydration processes. It is organized in the form of an annotated bibliography, whereby 54 journal papers and book chapters from the year 2008 to 2016 are summarized based on a classification according to separation technology employed. In addition, quantitative performance indicators (namely, cost and energy required for separation) in the papers/book chapters reviewed are presented on a consistent basis (per unit of bioethanol produced). All these will be useful to researchers and practitioners for technology selection and/or further advances in bioethanol separation.