Z3 symmetry-protected topological phases in the SU(3) AKLT model

被引:46
|
作者
Morimoto, Takahiro [1 ]
Ueda, Hiroshi [1 ]
Momoi, Tsutomu [1 ,2 ]
Furusaki, Akira [1 ,2 ]
机构
[1] RIKEN, Condensed Matter Theory Lab, Wako, Saitama 3510198, Japan
[2] RIKEN, Ctr Emergent Matter Sci, Wako, Saitama 3510198, Japan
关键词
BOND GROUND-STATES; CRITICAL EXPONENTS; QUANTUM; BREAKING; CHAINS;
D O I
10.1103/PhysRevB.90.235111
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study Z(3) symmetry-protected topological (SPT) phases in one-dimensional spin systems with Z(3) x Z(3) symmetry. We construct ground-state wave functions of the matrix product form for nontrivial Z(3) phases and their parent Hamiltonian from a cocycle of the group cohomology H-2(Z(3) x Z(3), U(1)). The Hamiltonian is an SU(3) version of the Affleck-Kennedy-Lieb-Tasaki (AKLT) model, consisting of bilinear and biquadratic terms of su(3) generators in the adjoint representation. A generalization to the SU(N) case, the SU(N) AKLT Hamiltonian, is also presented, which realizes nontrivial Z(N) SPT phases. We use the infinite-size variant of the density matrix renormalization group (iDMRG) method to determine the ground-state phase diagram of the SU(3) bilinear-biquadratic model as a function of the parameter. controlling the ratio of the bilinear and biquadratic coupling constants. The nontrivial Z(3) SPT phase is found for a range of the parameter. including the point of vanishing biquadratic term (theta = 0) as well as the SU(3) AKLT point [theta = arctan(2/9)]. A continuous phase transition to the SU(3) dimer phase takes place at theta approximate to -0.027 pi, with a central charge c approximate to 3.2. For SU(3) symmetric cases, we define string order parameters for the Z3 SPT phases in a similar way to the conventional Haldane phase. We propose simple spin models that effectively realize the SU(3) and SU(4) AKLT models.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Gapped SU(3) spin liquid with Z3 topological order
    Kurecic, Ivana
    Vanderstraeten, Laurens
    Schuch, Norbert
    PHYSICAL REVIEW B, 2019, 99 (04)
  • [32] Gross-Neveu-Wilson model and correlated symmetry-protected topological phases
    Bermudez, A.
    Tirrito, E.
    Rizzi, M.
    Lewenstein, M.
    Hands, S.
    ANNALS OF PHYSICS, 2018, 399 : 149 - 180
  • [33] Global anomalies on the surface of fermionic symmetry-protected topological phases in (3+1) dimensions
    Hsieh, Chang-Tse
    Cho, Gil Young
    Ryu, Shinsei
    PHYSICAL REVIEW B, 2016, 93 (07)
  • [34] SU(3)L x (Z3 x Z3) GAUGE SYMMETRY AND TRI- BIMAXIMAL MIXING
    Hattori, Chuichiro
    Matsunaga, Mamoru
    Matsuoka, Takeo
    Nakanishi, Kenichi
    MODERN PHYSICS LETTERS A, 2010, 25 (35) : 2981 - 2989
  • [35] "Not-A", representation symmetry-protected topological, and Potts phases in an S3-invariant chain
    O'Brien, Edward
    Vernier, Eric
    Fendley, Paul
    PHYSICAL REVIEW B, 2020, 101 (23)
  • [36] Two-dimensional topological paramagnets protected by Z3 symmetry: Properties of the boundary Hamiltonian
    Topchyan, Hrant
    Iugov, Vasilii
    Mirumyan, Mkhitar
    Hakobyan, Tigran
    Sedrakyan, Tigran A.
    Sedrakyan, Ara G.
    SCIPOST PHYSICS, 2025, 18 (02):
  • [37] Symmetry-protected topological phases in a two-leg SU(N) spin ladder with unequal spins
    Capponi, S.
    Fromholz, I. P.
    Lecheminant, P.
    Totsuka, K.
    PHYSICAL REVIEW B, 2020, 101 (19)
  • [38] Digital quantum simulation of Floquet symmetry-protected topological phases
    Xu Zhang
    Wenjie Jiang
    Jinfeng Deng
    Ke Wang
    Jiachen Chen
    Pengfei Zhang
    Wenhui Ren
    Hang Dong
    Shibo Xu
    Yu Gao
    Feitong Jin
    Xuhao Zhu
    Qiujiang Guo
    Hekang Li
    Chao Song
    Alexey V. Gorshkov
    Thomas Iadecola
    Fangli Liu
    Zhe-Xuan Gong
    Zhen Wang
    Dong-Ling Deng
    H. Wang
    Nature, 2022, 607 : 468 - 473
  • [39] Stable Symmetry-Protected Topological Phases in Systems with Heralded Noise
    Chirame, Sanket
    Burnell, Fiona J.
    Gopalakrishnan, Sarang
    Prem, Abhinav
    PHYSICAL REVIEW LETTERS, 2025, 134 (01)
  • [40] Unwinding fermionic symmetry-protected topological phases: Supersymmetry extension
    Prakash, Abhishodh
    Wang, Juven
    PHYSICAL REVIEW B, 2021, 103 (08)