Time-dependent properties in two-dimensional and Hamiltonian mappings

被引:1
|
作者
Livorati, A. L. P. [1 ]
de Oliveira, J. A. [2 ]
Ladeira, D. G. [3 ]
Leonel, E. D. [4 ]
机构
[1] Univ Sao Paulo, Inst Fis, BR-05314970 Sao Paulo, Brazil
[2] Univ Estadual Paulista, UNESP, Sao Joao Da Boa Vista, SP, Brazil
[3] Univ Fed Sao Joao del Rei, UFSJ, Dept Fis & Matemat, BR-36420000 Ouro Branco, MG, Brazil
[4] Univ Estadual Paulista, UNESP, IGCE, Dept Fis, BR-13506900 Rio Claro, SP, Brazil
来源
基金
巴西圣保罗研究基金会;
关键词
DYNAMICS;
D O I
10.1140/epjst/e2014-02308-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Some scaling properties for chaotic orbits in a family of two-dimensional Hamiltonian mappings are studied. The phase space of the model exhibits chaos and may have mixed structure with periodic islands, chaotic seas and invariant spanning curves. Average properties of the action variable in the chaotic sea are obtained as a function of time (t). From scaling arguments, critical exponents for the ensemble average of the action variable are obtained. Scaling invariance is obtained as a function of the control parameter that controls the intensity of the nonlinearity.
引用
收藏
页码:2953 / 2958
页数:6
相关论文
共 50 条