Poly Lactic Acid (PLA) Nanocomposites: Effect of Inorganic Nanoparticles Reinforcement on Its Performance and Food Packaging Applications

被引:71
|
作者
Mulla, Mehrajfatema Zafar [1 ]
Rahman, Md Ramim Tanver [2 ,3 ,4 ]
Marcos, Begonya [5 ]
Tiwari, Brijesh [6 ]
Pathania, Shivani [7 ]
机构
[1] Kuwait Inst Sci Res, Food & Nutr Program, Environm & Life Sci Res Ctr, POB 24885, Safat 13109, Kuwait
[2] Univ Laval, Fac Pharm, Quebec City, PQ G1V 0A6, Canada
[3] Univ Laval, Inst Nutr & Funct Foods, Quebec City, PQ G1V 0A6, Canada
[4] CHU Quebec Res Ctr, Med Chem Lab, 2705 Blvd Laurier, Quebec City, PQ G1V 4G2, Canada
[5] IRTA, Food Qual & Technol, Finca Camps & Armet S-N, Monells 17121, Spain
[6] Teagasc Food Res Ctr, Food Chem & Technol Dept, Dublin D15 KN3K, Ireland
[7] Teagasc Food Res Ctr, Food Ind Dev Dept, Dublin D15 KN3K, Ireland
来源
MOLECULES | 2021年 / 26卷 / 07期
关键词
poly lactic acid; PLA; nanoparticles; nanomaterials; nanocomposites; antimicrobial; degradation; TITANIUM-DIOXIDE NANOPARTICLES; WATER-VAPOR BARRIER; THERMAL-PROPERTIES; ZINC-OXIDE; HYDROLYTIC DEGRADATION; CELLULOSE NANOCRYSTALS; MECHANICAL-PROPERTIES; SILVER NANOPARTICLES; TIO2; NANOPARTICLES; ZNO NANOPARTICLE;
D O I
10.3390/molecules26071967
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Poly lactic acid (PLA) is a compostable, as well as recyclable, sustainable, versatile and environmentally friendly alternative, because the monomer of PLA-lactide (LA) is extracted from natural sources. PLA's techno-functional properties are fairly similar to fossil-based polymers; however, in pristine state, its brittleness and delicacy during processing pose challenges to its potential exploitation in diverse food packaging applications. PLA is, therefore, re-engineered to improve its thermal, rheological, barrier and mechanical properties through nanoparticle (NP) reinforcement. This review summarises the studies on PLA-based nanocomposites (PLA NCs) developed by reinforcing inorganic metal/metallic oxide, graphite and silica-based nanoparticles (NPs) that exhibit remarkable improvement in terms of storage modulus, tensile strength, crystallinity, glass transition temperature (Tg) value, antimicrobial property and a decrease in water vapour and oxygen permeability when compared with the pristine PLA films. This review has also discussed the regulations around the use of metal oxide-based NPs in food packaging, PLA NC biodegradability and their applications in food systems. The industrial acceptance of NCs shows highly promising perspectives for the replacement of traditional petrochemical-based polymers currently being used for food packaging.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Development and Characterization of Polylactic Acid (PLA)-Based Nanocomposites Used for Food Packaging
    Moldovan, Andrei
    Cuc, Stanca
    Prodan, Doina
    Rusu, Mircea
    Popa, Dorin
    Taut, Adrian Catalin
    Petean, Ioan
    Bombos, Dorin
    Doukeh, Rami
    Nemes, Ovidiu
    POLYMERS, 2023, 15 (13)
  • [32] The synthesis of poly (lactic acid)-fulvic acid graft polymer and its effect on the crystallization and performance of poly (lactic acid)
    Duan, Kun
    Zhen, Weijun
    POLYMER-PLASTICS TECHNOLOGY AND MATERIALS, 2019, 58 (17): : 1875 - 1888
  • [33] Effect of rigid nanoparticles and preparation techniques on the performances of poly(lactic acid) nanocomposites: A review
    Sanusi, Olawale M.
    Benelfellah, Abdelkibir
    Bikiaris, Dimitrios N.
    Ait Hocine, Nourredine
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2021, 32 (02) : 444 - 460
  • [34] Poly lactic acid (PLA) polymers: from properties to biomedical applications
    Ebrahimi, Farnoosh
    Dana, Hossein Ramezani
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2022, 71 (15) : 1117 - 1130
  • [35] Poly(lactic acid) (PLA)/poly(butylene succinate adipate) (PBSA) films with Micro fibrillated cellulose (MFC) and cardanol for packaging applications
    Apicella, Annalisa
    Molinari, Giovanna
    Gigante, Vito
    Pietrosanto, Arianna
    Incarnato, Loredana
    Aliotta, Laura
    Lazzeri, Andrea
    CELLULOSE, 2024, 31 (15) : 9173 - 9190
  • [36] Effect of Sterilization Methods on Electrospun Poly(lactic acid) (PLA) Fiber Alignment for Biomedical Applications
    Valente, T. A. M.
    Silva, D. M.
    Gomes, P. S.
    Fernandes, M. H.
    Santos, J. D.
    Sencadas, V.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (05) : 3241 - 3249
  • [37] Effect of maleic anhydride grafted poly(lactic acid) on rheological behaviors and mechanical performance of poly(lactic acid)/poly(ethylene glycol) (PLA/PEG) blends
    Yu, Songting
    Zhang, Yiting
    Hu, Huan
    Li, Juncheng
    Zhou, Weiyi
    Zhao, Xipo
    Peng, Shaoxian
    RSC ADVANCES, 2022, 12 (49) : 31629 - 31638
  • [38] Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application
    Bhatia, Amita
    Gupta, Rahul K.
    Bhaftacharya, Sati. N.
    Choi, H. J.
    KOREA-AUSTRALIA RHEOLOGY JOURNAL, 2007, 19 (03) : 125 - 131
  • [39] Biopolymer Blends of Poly(lactic acid) and Poly(hydroxybutyrate) and Their Functionalization with Glycerol Triacetate and Chitin Nanocrystals for Food Packaging Applications
    Patel, Mitul Kumar
    Hansson, Freja
    Pitkanen, Olli
    Geng, Shiyu
    Oksman, Kristiina
    ACS APPLIED POLYMER MATERIALS, 2022, 4 (09): : 6592 - 6601
  • [40] A review of exploring the synthesis, properties, and diverse applications of poly lactic acid with a focus on food packaging application
    Reshma, C. S.
    Remya, S.
    Bindu, J.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 283