A new upper bound for the largest growth rate of linear Rayleigh-Taylor instability

被引:1
|
作者
Dou, Changsheng [1 ]
Wang, Jialiang [2 ]
Wang, Weiwei [2 ]
机构
[1] Capital Univ Econ & Business, Sch Stat, Beijing, Peoples R China
[2] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou, Peoples R China
关键词
Rayleigh-Taylor instability; Stratified viscous fluids; Incompressible fluids; Surface tension; STABILITY;
D O I
10.1186/s13660-021-02613-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the effect of (interface) surface tensor on the linear Rayleigh-Taylor (RT) instability in stratified incompressible viscous fluids. The existence of linear RT instability solutions with largest growth rate Lambda is proved under the instability condition (i.e., the surface tension coefficient upsilon is less than a threshold upsilon(c)) by the modified variational method of PDEs. Moreover, we find a new upper bound for Lambda. In particular, we directly observe from the upper bound that Lambda decreasingly converges to zero as upsilon goes from zero to the threshold upsilon(c).
引用
收藏
页数:28
相关论文
共 50 条
  • [21] RAYLEIGH-TAYLOR INSTABILITY
    PLESSET, MS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 1095 - 1095
  • [22] RAYLEIGH-TAYLOR INSTABILITY
    BABENKO, KI
    PETROVICH, VI
    DOKLADY AKADEMII NAUK SSSR, 1979, 245 (03): : 551 - 554
  • [23] GROWTH-RATE REDUCTION OF THE RAYLEIGH-TAYLOR INSTABILITY BY ABLATIVE CONVECTION
    WOUCHUK, JG
    PIRIZ, AR
    PHYSICS OF PLASMAS, 1995, 2 (02) : 493 - 500
  • [24] The Rayleigh-Taylor instability
    Piriz, A. R.
    Cortazar, O. D.
    Lopez Cela, J. J.
    Tahir, N. A.
    AMERICAN JOURNAL OF PHYSICS, 2006, 74 (12) : 1095 - 1098
  • [25] Effects of viscosity on the growth of Rayleigh-Taylor instability
    Cao, Y. G.
    Guo, H. Z.
    Zhang, Z. F.
    Sun, Z. H.
    Chow, W. K.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (27)
  • [26] ANALYTICAL CORRELATIONS FOR RAYLEIGH-TAYLOR INSTABILITY GROWTH
    JACOBS, H
    NUCLEAR TECHNOLOGY, 1985, 71 (01) : 131 - 144
  • [27] RAYLEIGH-TAYLOR INSTABILITY IN A STABILIZED LINEAR PINCH TUBE
    ALBARES, DJ
    KRALL, NA
    OXLEY, CL
    PHYSICS OF FLUIDS, 1961, 4 (08) : 1031 - 1036
  • [28] NON-LINEAR RAYLEIGH-TAYLOR INSTABILITY IN HYDROMAGNETICS
    CHAKRABORTY, BB
    NAYAK, AR
    IYENGAR, HKS
    JOURNAL OF PLASMA PHYSICS, 1983, 30 (OCT) : 193 - 201
  • [29] LINEAR RAYLEIGH-TAYLOR INSTABILITY FOR VISCOUS, COMPRESSIBLE FLUIDS
    Guo, Yan
    Tice, Ian
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (04) : 1688 - 1720
  • [30] Linear analysis of incompressible Rayleigh-Taylor instability in solids
    Piriz, A. R.
    Lopez Cela, J. J.
    Tahir, N. A.
    PHYSICAL REVIEW E, 2009, 80 (04):