A 3-D finite element Poisson-Nernst-Planck model for the analysis of ion transport across ionic channels

被引:2
|
作者
Coco, Salvatore [1 ]
Gazzo, Daniela [1 ]
Laudani, Antonino [1 ]
Pollicino, Giuseppe [1 ]
机构
[1] Univ Catania, DIEES, I-95125 Catania, Italy
关键词
finite element method; ion transport; membrane ionic channel; Poisson-Nernst-Planck model;
D O I
10.1109/TMAG.2007.891402
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A 3-D finite element steady-state Poisson-Nernst-Planck model is presented and applied to the analysis of the ion transport across ionic channels of the cellular membrane. The model allows us to obtain an accurate description of ion flow across the cell membrane. An example of application to the case of a K+ channel is also illustrated. The resulting current-voltage relationship for the K+ channel shows excellent agreement with experimental measurements.
引用
收藏
页码:1461 / 1464
页数:4
相关论文
共 50 条
  • [21] An analysis of ion channels in time-varying fields by the generalized Poisson-Nernst-Planck theory
    Zhou, Shu-Ang
    Uesaka, Mitsuru
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2009, 29 (01) : 25 - 36
  • [22] HOMOGENIZATION OF THE POISSON-NERNST-PLANCK EQUATIONS FOR ION TRANSPORT IN CHARGED POROUS MEDIA
    Schmuck, Markus
    Bazant, Martin Z.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (03) : 1369 - 1401
  • [23] Mathematical studies of Poisson-Nernst-Planck model for membrane channels: Finite ion size effects without electroneutrality boundary conditions
    Aitbayev, Rakhim
    Bates, Peter W.
    Lu, Hong
    Zhang, Lijun
    Zhang, Mingji
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 362 : 510 - 527
  • [24] A POISSON-NERNST-PLANCK MODEL FOR BIOLOGICAL ION CHANNELS-AN ASYMPTOTIC ANALYSIS IN A THREE-DIMENSIONAL NARROW FUNNEL
    Singer, A.
    Norbury, J.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (03) : 949 - 968
  • [25] Finite Ion Size Effects on Ionic Flows via Poisson-Nernst-Planck Systems: Higher Order Contributions
    Fu, Yanggeng
    Liu, Weishi
    Mofidi, Hamid
    Zhang, Mingji
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (02) : 1585 - 1609
  • [26] Adaptive finite element approximation for steady-state Poisson-Nernst-Planck equations
    Tingting Hao
    Manman Ma
    Xuejun Xu
    Advances in Computational Mathematics, 2022, 48
  • [27] Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels
    Coalson, RD
    Kurnikova, MG
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2005, 4 (01) : 81 - 93
  • [28] ION SIZE AND VALENCE EFFECTS ON IONIC FLOWS VIA POISSON-NERNST-PLANCK MODELS
    Bates, Peter W.
    Liu, Weishi
    Lu, Hong
    Zhang, Mingji
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (04) : 881 - 901
  • [29] A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore
    Chaudhry, Jehanzeb Hameed
    Comer, Jeffrey
    Aksimentiev, Aleksei
    Olson, Luke N.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 15 (01) : 93 - 125
  • [30] A stabilized finite element method for the Poisson-Nernst-Planck equations in three-dimensional ion channel simulations
    Wang, Qin
    Li, Hongliang
    Zhang, Linbo
    Lu, Benzhuo
    APPLIED MATHEMATICS LETTERS, 2021, 111 (111)