A High-Rate and Stable Quasi-Solid-State Zinc-Ion Battery with Novel 2D Layered Zinc Orthovanadate Array

被引:663
|
作者
Chao, Dongliang [1 ]
Zhu, Changrong [1 ,2 ]
Song, Ming [1 ,3 ]
Liang, Pei [4 ]
Zhang, Xiao [5 ]
Nguyen Huy Tiep [1 ]
Zhao, Haofei [6 ]
Wang, John [2 ]
Wang, Rongming [6 ]
Zhang, Hua [5 ]
Fan, Hong Jin [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore
[2] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117574, Singapore
[3] Xuzhou Univ Technol, Sch Chem & Chem Engn, Xuzhou 221018, Jiangsu, Peoples R China
[4] China Jiliang Univ, Coll Opt & Elect Technol, Hangzhou 310038, Zhejiang, Peoples R China
[5] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[6] Univ Sci & Technol, Sch Math & Phys, Beijing Key Lab Magnetophotoelect Composite & Int, Beijing 100083, Peoples R China
关键词
flexible electrode; layered zinc orthovanadate; quasi-solid-state; zinc array; zinc-ion batteries; ELECTROCHEMICAL ENERGY-STORAGE; NA-ION; HIGH-CAPACITY; LI; INTERCALATION; CATHODE; MG; NANOSHEETS; ULTRAFAST; DENSITY;
D O I
10.1002/adma.201803181
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zinc-ion batteries are under current research focus because of their uniqueness in low cost and high safety. However, it is still desirable to improve the rate performance by improving the Zn2+ (de)intercalation kinetics and long-cycle stability by eliminating the dendrite formation problem. Herein, the first paradigm of a high-rate and ultrastable flexible quasi-solid-state zinc-ion battery is constructed from a novel 2D ultrathin layered zinc orthovanadate array cathode, a Zn array anode supported by a conductive porous graphene foam, and a gel electrolyte. The nanoarray structure for both electrodes assures the high rate capability and alleviates the dendrite growth. The flexible Zn-ion battery has a depth of discharge of approximate to 100% for the cathode and 66% for the anode, and delivers an impressive high-rate of 50 C (discharge in 60 s), long-term durability of 2000 cycles at 20 C, and unprecedented energy density approximate to 115 Wh kg(-1), together with a peak power density approximate to 5.1 kW kg(-1) (calculation includes masses of cathode, anode, and current collectors). First principles calculations and quantitative kinetics analysis show that the high-rate and stable properties are correlated with the 2D fast ion-migration pathways and the introduced intercalation pseudocapacitance.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Flexible Quasi-Solid-State Aqueous Zinc-Ion Batteries: Design Principles, Functionalization Strategies, and Applications
    Wang, Wenhui
    Li, Chaowei
    Liu, Shizhuo
    Zhang, Jingchao
    Zhang, Daojun
    Du, Jimin
    Zhang, Qichong
    Yao, Yagang
    ADVANCED ENERGY MATERIALS, 2023, 13 (18)
  • [22] Ag-Doping Effect on MnO2 Cathodes for Flexible Quasi-Solid-State Zinc-Ion Batteries
    Liao, Yanxin
    Yang, Chun
    Xu, Qimeng
    Zhao, Wenxuan
    Zhao, Jingwen
    Wang, Kuikui
    Chen, Hai-Chao
    BATTERIES-BASEL, 2022, 8 (12):
  • [23] Rapidly Synthesized Single-Ion Conductive Hydrogel Electrolyte for High-Performance Quasi-Solid-State Zinc-ion Batteries
    Qiu, Tianyu
    Wang, Tonghui
    Tang, Wensi
    Li, Yingqi
    Li, Yangguang
    Lang, Xingyou
    Jiang, Qing
    Tan, Huaqiao
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (45)
  • [24] Scaffolded hierarchical CeVO4/V2CTx-MXene cathode for flexible quasi-solid-state aqueous zinc-ion battery
    Xu, Wengang
    Zhang, Xiaonan
    Li, Junhao
    Chen, Xiaobo
    Lan, Lin
    Zhang, Jun
    Ling, Francis Chi-Chung
    Ru, Qiang
    IONICS, 2024, 30 (03) : 1457 - 1467
  • [25] Scaffolded hierarchical CeVO4/V2CTx-MXene cathode for flexible quasi-solid-state aqueous zinc-ion battery
    Wengang Xu
    Xiaonan Zhang
    Junhao Li
    Xiaobo Chen
    Lin Lan
    Jun Zhang
    Francis Chi-Chung Ling
    Qiang Ru
    Ionics, 2024, 30 : 1457 - 1467
  • [26] High-capacity K plus -pillared layered manganese dioxide as cathode material for high-rate aqueous zinc-ion battery
    Song, Ailing
    Zhao, Jinghao
    Qiao, Chunting
    Ding, Yali
    Tian, Guoxing
    Fan, Yuqian
    Ma, Zhipeng
    Dai, Lei
    Shao, Guangjie
    Liu, Zhaoping
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 674 : 336 - 344
  • [27] A High-Performance Quasi-Solid-State Aqueous Zinc-Dual Halogen Battery
    Lv, Shuyao
    Fang, Timing
    Ding, Zhezheng
    Wang, Yan
    Jiang, Hao
    Wei, Chuanlong
    Zhou, Dong
    Tang, Xiao
    Liu, Xiaomin
    ACS NANO, 2022, 16 (12) : 20389 - 20399
  • [28] Polypyrrole incorporated a novel ZnMn2O4 cathode for high-energy quasi-solid state zinc-ion battery
    Rajarathnam, D. R. P.
    Sundaramurthy, K.
    Vadivel, S.
    Al-Anazi, Khalid Mashay
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (23)
  • [29] Keggin Bicapped-Type Polyoxovanadate as Cathode Material for High-Performance Quasi-Solid-State Zinc-Ion Batteries
    Dedetemo Kimilita, Patrick
    Yoshimi, Yu
    Sonoyama, Noriyuki
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (02) : 629 - 638
  • [30] Multifunctional quasi-solid-state zinc-ion hybrid supercapacitors beyond state-of-the-art structural energy storage
    Amiri, Ahmad
    Vaught, Louis
    Naraghi, Mohammad
    Polycarpou, Andreas A.
    MATERIALS TODAY PHYSICS, 2022, 24