BINDER: computationally inferring a gene regulatory network for Mycobacterium abscessus

被引:4
|
作者
Staunton, Patrick M. [1 ]
Miranda-CasoLuengo, Aleksandra A. [2 ]
Loftus, Brendan J. [1 ]
Gormley, Isobel Claire [3 ]
机构
[1] Univ Coll Dublin, Conway Inst, Sch Med, Dublin, Ireland
[2] Trnity Coll Dublin, Moyne Inst Prevent Med, Dept Microbiol, Dublin, Ireland
[3] Univ Coll Dublin, Sch Math & Stat, Insight Ctr Data Analyt, Dublin, Ireland
基金
英国惠康基金; 爱尔兰科学基金会;
关键词
Gene regulatory network; Mycobacterium abscessus; Bayesian inference; Data integration; FACTOR-BINDING SITES; R PACKAGE; CHIP-SEQ; BACTERIAL; TUBERCULOSIS; DISCOVERY; COREGULATION; COLLECTION; SELECTION; ECOLOGY;
D O I
10.1186/s12859-019-3042-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundAlthough many of the genic features in Mycobacterium abscessus have been fully validated, a comprehensive understanding of the regulatory elements remains lacking. Moreover, there is little understanding of how the organism regulates its transcriptomic profile, enabling cells to survive in hostile environments. Here, to computationally infer the gene regulatory network for Mycobacterium abscessus we propose a novel statistical computational modelling approach: BayesIan gene regulatory Networks inferreD via gene coExpression and compaRative genomics (BINDER). In tandem with derived experimental coexpression data, the property of genomic conservation is exploited to probabilistically infer a gene regulatory network in Mycobacterium abscessus.Inference on regulatory interactions is conducted by combining primary' and auxiliary' data strata. The data forming the primary and auxiliary strata are derived from RNA-seq experiments and sequence information in the primary organism Mycobacterium abscessus as well as ChIP-seq data extracted from a related proxy organism Mycobacterium tuberculosis. The primary and auxiliary data are combined in a hierarchical Bayesian framework, informing the apposite bivariate likelihood function and prior distributions respectively. The inferred relationships provide insight to regulon groupings in Mycobacterium abscessus.ResultsWe implement BINDER on data relating to a collection of 167,280 regulator-target pairs resulting in the identification of 54 regulator-target pairs, across 5 transcription factors, for which there is strong probability of regulatory interaction.ConclusionsThe inferred regulatory interactions provide insight to, and a valuable resource for further studies of, transcriptional control in Mycobacterium abscessus, and in the family of Mycobacteriaceae more generally. Further, the developed BINDER framework has broad applicability, useable in settings where computational inference of a gene regulatory network requires integration of data sources derived from both the primary organism of interest and from related proxy organisms.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Treatment Of Mycobacterium Abscessus: A Case Series Via The Emerging Infections Network
    Novosad, S.
    Polgreen, P.
    Mackey, K.
    Beekmann, S.
    Winthrop, K. L.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2014, 189
  • [32] Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model
    Wang, Jiacheng
    Chen, Yaojia
    Zou, Quan
    PLOS GENETICS, 2023, 19 (09):
  • [33] Inferring Gene Regulatory Network Models from Time-Series Data Using Metaheuristics
    da Silva, Jose Eduardo H.
    Betnardino, Heder S.
    Barbosa, Helio J. C.
    Vieira, Alex B.
    Campos, Luciana C. D.
    de Oliveira, Itamar L.
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [34] Inferring a Transcriptional Regulatory Network from Gene Expression Data Using Nonlinear Manifold Embedding
    Zare, Hossein
    Kaveh, Mostafa
    Khodursky, Arkady
    PLOS ONE, 2011, 6 (08):
  • [35] Inferring causal gene regulatory network via GreyNet: From dynamic grey association to causation
    Chen, Guangyi
    Liu, Zhi-Ping
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [36] Inferring single-cell gene regulatory network by non-redundant mutual information
    Zeng, Yanping
    He, Yongxin
    Zheng, Ruiqing
    Li, Min
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [37] The Mycobacterium tuberculosis regulatory network and hypoxia
    Galagan, James E.
    Minch, Kyle
    Peterson, Matthew
    Lyubetskaya, Anna
    Azizi, Elham
    Sweet, Linsday
    Gomes, Antonio
    Rustad, Tige
    Dolganov, Gregory
    Glotova, Irina
    Abeel, Thomas
    Mahwinney, Chris
    Kennedy, Adam D.
    Allard, Rene
    Brabant, William
    Krueger, Andrew
    Jaini, Suma
    Honda, Brent
    Yu, Wen-Han
    Hickey, Mark J.
    Zucker, Jeremy
    Garay, Christopher
    Weiner, Brian
    Sisk, Peter
    Stolte, Christian
    Winkler, Jessica K.
    Van de Peer, Yves
    Iazzetti, Paul
    Camacho, Diogo
    Dreyfuss, Jonathan
    Liu, Yang
    Dorhoi, Anca
    Mollenkopf, Hans-Joachim
    Drogaris, Paul
    Lamontagne, Julie
    Zhou, Yiyong
    Piquenot, Julie
    Park, Sang Tae
    Raman, Sahadevan
    Kaufmann, Stefan H. E.
    Mohney, Robert P.
    Chelsky, Daniel
    Moody, D. Branch
    Sherman, David R.
    Schoolnik, Gary K.
    NATURE, 2013, 499 (7457) : 178 - 183
  • [38] The Transcriptional Regulatory Network of Mycobacterium tuberculosis
    Sanz, Joaquin
    Navarro, Jorge
    Arbues, Ainhoa
    Martin, Carlos
    Marijuan, Pedro C.
    Moreno, Yamir
    PLOS ONE, 2011, 6 (07):
  • [39] The Mycobacterium tuberculosis regulatory network and hypoxia
    James E. Galagan
    Kyle Minch
    Matthew Peterson
    Anna Lyubetskaya
    Elham Azizi
    Linsday Sweet
    Antonio Gomes
    Tige Rustad
    Gregory Dolganov
    Irina Glotova
    Thomas Abeel
    Chris Mahwinney
    Adam D. Kennedy
    René Allard
    William Brabant
    Andrew Krueger
    Suma Jaini
    Brent Honda
    Wen-Han Yu
    Mark J. Hickey
    Jeremy Zucker
    Christopher Garay
    Brian Weiner
    Peter Sisk
    Christian Stolte
    Jessica K. Winkler
    Yves Van de Peer
    Paul Iazzetti
    Diogo Camacho
    Jonathan Dreyfuss
    Yang Liu
    Anca Dorhoi
    Hans-Joachim Mollenkopf
    Paul Drogaris
    Julie Lamontagne
    Yiyong Zhou
    Julie Piquenot
    Sang Tae Park
    Sahadevan Raman
    Stefan H. E. Kaufmann
    Robert P. Mohney
    Daniel Chelsky
    D. Branch Moody
    David R. Sherman
    Gary K. Schoolnik
    Nature, 2013, 499 : 178 - 183
  • [40] Utility of Sequencing the erm(41) Gene in Isolates of Mycobacterium abscessus subsp abscessus with Low and Intermediate Clarithromycin MICs
    Brown-Elliott, Barbara A.
    Vasireddy, Sruthi
    Vasireddy, Ravikiran
    Iakhiaeva, Elena
    Howard, Susan T.
    Nash, Kevin
    Parodi, Nicholas
    Strong, Anita
    Gee, Martha
    Smith, Terry
    Wallace, Richard J., Jr.
    JOURNAL OF CLINICAL MICROBIOLOGY, 2015, 53 (04) : 1211 - 1215