Domains of t-functions

被引:0
|
作者
Litvinov, NV
机构
[1] Shuya State Pedagogical University,
关键词
partial recursive functions; resemblance; recursive isomorphism; simple set; pseudosimple set; immune set;
D O I
10.1023/A:1023211321787
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A nonempty and nonconstant partial recursive function such that any function resembling it is recursively isomorphic to it is called a t-function. It is proved that the domain of any t-function is neither a simple nor a pseudosimple set.
引用
收藏
页码:536 / 538
页数:3
相关论文
共 50 条
  • [41] Integrability of superharmonic functions, uniform domains, and Holder domains
    Gotoh, Y
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (05) : 1443 - 1451
  • [42] DOMAINS OF EXISTENCE FOR PLURISUBHARMONIC FUNCTIONS
    BEDFORD, E
    BURNS, D
    MATHEMATISCHE ANNALEN, 1978, 238 (01) : 67 - 69
  • [43] Theta functions on tube domains
    Dorfmeister, Josef F.
    Walcher, Sebastian
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2018, 88 (02): : 273 - 288
  • [44] Contragenic functions on spheroidal domains
    Garcia-Ancona, Raybel
    Morais, Joao
    Michael Porter, R.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (07) : 2575 - 2589
  • [45] Operating on Functions with Variable Domains
    Philip G. Calabrese
    Journal of Philosophical Logic, 2003, 32 : 1 - 18
  • [46] Domains of Existence of Polymonogenic Functions
    Victor Palamodov
    Advances in Applied Clifford Algebras, 2009, 19 : 417 - 425
  • [47] Quadrature domains for harmonic functions
    Gardiner, Stephen J.
    Sjoedin, Tomas
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 : 586 - 590
  • [48] On convolution of functions in angular domains
    V. M. Dil’nyi
    Ukrainian Mathematical Journal, 2013, 64 : 1315 - 1325
  • [49] FUNCTIONS AUTOMORPHIC ON LARGE DOMAINS
    JAMES, DA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 181 (JUL) : 385 - 400
  • [50] DOMAINS WITH LIPSCHITZ MAPPING FUNCTIONS
    LESLEY, FD
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1983, 8 (02): : 219 - 233